Revisiting kernel logistic regression under the random utility models perspective. An interpretable machine-learning approach

被引:20
作者
Angel Martin-Baos, Jose [1 ,2 ]
Garcia-Rodenas, Ricardo [1 ,2 ]
Rodriguez-Benitez, Luis [3 ]
机构
[1] Univ Castilla La Mancha, Escuela Super Informat, Dept Matemat, Ciudad Real, Spain
[2] Univ Castilla La Mancha, Inst Matemat Aplicada Ciencia & Ingn IMACI, Ciudad Real, Spain
[3] Univ Castilla La Mancha, Dept Tecnol & Sistemas Informat, Ciudad Real, Spain
来源
TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH | 2021年 / 13卷 / 03期
关键词
Random utility models; kernel Logistic Regression; machine Learning; willingness to Pay; value of Time; CHOICE;
D O I
10.1080/19427867.2020.1861504
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The success of machine-learning methods is spreading their use to many different fields. This paper analyses one of these methods, the Kernel Logistic Regression (KLR), from the point of view of Random Utility Model (RUM) and proposes the use of the KLR to specify the utilities in RUM, freeing the modeler from the need to postulate a functional relation between the features. A Monte Carlo simulation study is conducted to empirically compare KLR with the Multinomial Logit (MNL) method, the Support Vector Machine (SVM) and the Random Forests (RF). We have shown that, using simulated data, KLR is the only method that achieves maximum accuracy and leads to an unbiased willingness-to-pay estimator for non-linear phenomena. In a real travel mode choice problem, RF achieved the highest predictive accuracy, followed by KLR. However, KLR allows for the calculation of indicators such as the value of time, which is of great importance in the context of transportation.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 45 条
[1]   A generalized additive model for discrete-choice data [J].
Abe, M .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1999, 17 (03) :271-284
[2]   Model for Integrating Home-Work Tour Scheduling with Time-Varying Network Congestion and Marginal Utility Profiles for Home and Work Activities [J].
Adnan, Muhammad ;
Watling, David ;
Fowkes, Tony .
TRANSPORTATION RESEARCH RECORD, 2009, (2134) :21-30
[3]   Attitudes towards mode choice in Switzerland [J].
Atasoy, Bilge ;
Glerum, Aurelie ;
Bierlaire, Michel .
DISP, 2013, 49 (02) :101-117
[4]   Evaluating multiple classifiers for stock price direction prediction [J].
Ballings, Michel ;
Van den Poel, Dirk ;
Hespeels, Nathalie ;
Gryp, Ruben .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (20) :7046-7056
[5]   Arriving at a decision: A semi-parametric approach to institutional birth choice in India [J].
Bansal, Prateek ;
Daziano, Ricardo A. ;
Sunder, Naveen .
JOURNAL OF CHOICE MODELLING, 2019, 31 :86-103
[6]  
Ben-Akiva M., 1999, Handbook of Transportation Science, P5, DOI [DOI 10.1007/978-1-4615-5203-1_2, 10.1007/978-1-4615-5203-1_2]
[7]  
Ben-Akiva M.E., 1985, Discrete choice analysis: theory and application to travel demand, VVolume 9
[8]  
Bierlaire M., 2018, Calculating indicators with PandasBiogeme
[9]   Asymmetric, closed-form, finite-parameter models of multinomial choice [J].
Brathwaite, Timothy ;
Walker, Joan L. .
JOURNAL OF CHOICE MODELLING, 2018, 29 :78-112
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32