Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field

被引:42
作者
Salo, Mikko [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
关键词
Dirichlet to Neumann map; inverse problems; semiclassical calculus;
D O I
10.1080/03605300500530420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a procedure for reconstructing a magnetic field and electric potential from boundary measurements given by the Dirichlet to Neumann map for the magnetic Schrodinger operator in R(n), n >= 3. The magnetic potential is assumed to be continuous with L(infinity) divergence and zero boundary values. The method is based on semiclassical pseudodifferential calculus and the construction of complex geometrical optics solutions in weighted Sobolev spaces.
引用
收藏
页码:1639 / 1666
页数:28
相关论文
共 27 条
[1]  
[Anonymous], ELLIPTIC PARTIAL DIF
[2]  
[Anonymous], HODGE DECOMPOSITION
[3]   Global uniqueness in the impedance-imaging problem for less regular conductivities [J].
Brown, RM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1049-1056
[4]  
CALDERON AP, 1980, SEM NUM AN ITS APPL
[5]  
Dimassi M., 1999, LONDON MATH SOC LECT, V268
[6]   INVERSE SCATTERING PROBLEM FOR THE SCHRODINGER-EQUATION WITH MAGNETIC POTENTIAL AT A FIXED-ENERGY [J].
ESKIN, G ;
RALSTON, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (01) :199-224
[7]   Inverse scattering problem in nuclear physics - Optical model [J].
Isozaki, H ;
Nakazawa, H ;
Uhlmann, G .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (07) :2613-2632
[8]   Smoothing effects and local existence theory for the generalized nonlinear Schrodinger equations [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
INVENTIONES MATHEMATICAE, 1998, 134 (03) :489-545
[9]  
KENIG CE, IN PRESS ANN MATH
[10]   Finite energy solutions of Maxwell's equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds [J].
Mitrea, D ;
Mitrea, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 190 (02) :339-417