Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces

被引:41
作者
Markman, Eyal [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
关键词
moduli spaces; vector bundles; coherent sheaves; Poisson surfaces;
D O I
10.1016/j.aim.2006.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a smooth and compact moduli space of stable coherent sheaves on a projective surface S with an effective (or trivial) anti-canonical line bundle. We find generators for the cohomology ring of M, with integral coefficients. When S is simply connected and a universal sheaf epsilon exists over S x M, then its class [epsilon] admits a Kunneth decomposition as a class in the tensor product K-top(0)(epsilon) circle times K-top(0)(M) of the topological K-rings. The generators are the Chern classes of the Kunneth factors of [epsilon] in K-top(0)(M). The general case is similar. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:622 / 646
页数:25
相关论文
共 41 条
  • [1] [Anonymous], 1978, K THEORY INTRO
  • [2] ARTAMKIN IV, 1988, MATH USSR IZV+, V52, P663
  • [3] Atiyah M., 1962, Topology, V1, P245
  • [4] Atiyah M F, 1962, Topology, V1, P151
  • [5] Atiyah M. F., MATHKT0407054
  • [6] Atiyah M. F., 1967, LECT NOTES
  • [7] Atiyah M F, 1961, P S PURE MATH, V3, P7
  • [8] BARTOCCI C, MATHAG0402338
  • [9] RIEMANN-ROCH AND TOPOLOGICAL K-THEORY FOR SINGULAR-VARIETIES
    BAUM, P
    FULTON, W
    MACPHERSON, R
    [J]. ACTA MATHEMATICA, 1979, 143 (3-4) : 155 - 192
  • [10] Beauville A., 1995, GEOMETRY ANAL, P37