Large-scale online learning of implied volatilities

被引:2
作者
Kim, Tae-Kyoung [1 ]
Kim, Hyun-Gyoon [2 ]
Huh, Jeonggyu [1 ]
机构
[1] Chonnam Natl Univ, Dept Math & Stat, Gwangju 61186, South Korea
[2] Yonsei Univ, Dept Math, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Implied volatility; Black-Scholes model; Online learning; Large-scale data; Deep learning; FORMULA;
D O I
10.1016/j.eswa.2022.117365
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online-learning-based approaches do not suffer from generalization errors because the data are used once anddiscarded rather than reused. This characteristic enables incredible accuracy in estimating implied volatilitiesover a wide input area, outperforming existing state-of-the-art studies. In addition, an iterative method furtherimproves the estimates. The iterative method takes the estimate as an initial guess and corrects it, quicklygiving a virtually true value. Additionally, optimizing the network structure with TensorRT significantlyreduces the time spent on these processes
引用
收藏
页数:10
相关论文
共 27 条
[1]  
[Anonymous], 2015, Wilmott, DOI [10.1002/wilm.10395, DOI 10.1002/WILM.10395]
[2]  
Bharadia M.A. J., 1995, ADV FUTURES OPTIONS, V8, P15
[3]  
Bottou U, 2004, ADV NEUR IN, V16, P217
[4]  
Brenner Menachem., 1988, FINANC ANAL J, V44, P80
[5]   Model specification and risk premia: Evidence from futures options [J].
Broadie, Mark ;
Chernov, Mikhail ;
Johannes, Michael .
JOURNAL OF FINANCE, 2007, 62 (03) :1453-1490
[6]  
Chance D., 1996, FINANC REV, V31, P859
[7]   The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well [J].
Christoffersen, Peter ;
Heston, Steven ;
Jacobs, Kris .
MANAGEMENT SCIENCE, 2009, 55 (12) :1914-1932
[8]   A note on a simple, accurate formula to compute implied standard deviations [J].
Corrado, CJ ;
Miller, TW .
JOURNAL OF BANKING & FINANCE, 1996, 20 (03) :595-603
[9]   SHAPE PRESERVING PIECEWISE RATIONAL INTERPOLATION [J].
DELBOURGO, R ;
GREGORY, JA .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (04) :967-976
[10]   New approximations for standard normal distribution function [J].
Eidous, Omar M. ;
Abu-Shareefa, Rima .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (06) :1357-1374