Explaining Jupiter's magnetic field and equatorial jet dynamics

被引:62
|
作者
Gastine, T. [1 ]
Wicht, J. [1 ]
Duarte, L. D. V. [1 ,2 ]
Heimpel, M. [3 ]
Becker, A. [4 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany
[2] Univ Lyon, CNRS, Lab Geol Lyon, Lyon, France
[3] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[4] Univ Rostock, Inst Phys, D-18055 Rostock, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Jupiter dynamics; GIANT PLANETS; SCALING LAWS; ZONAL FLOW; CONVECTION; MODELS; HYDROGEN; SOLAR;
D O I
10.1002/2014GL060814
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spacecraft data reveal a very Earth-like Jovian magnetic field. This is surprising since numerical simulations have shown that the vastly different interiors of terrestrial and gas planets can strongly affect the internal dynamo process. Here we present the first numerical dynamo that manages to match the structure and strength of the observed magnetic field by embracing the newest models for Jupiter's interior. Simulated dynamo action primarily occurs in the deep high electrical conductivity region, while zonal flows are dynamically constrained to a strong equatorial jet in the outer envelope of low conductivity. Our model reproduces the structure and strength of the observed global magnetic field and predicts that secondary dynamo action associated to the equatorial jet produces banded magnetic features likely observable by the Juno mission. Secular variation in our model scales to about 2000 nT per year and should also be observable during the 1 year nominal mission duration.
引用
收藏
页码:5410 / 5419
页数:10
相关论文
共 50 条
  • [21] Equatorial magnetic dipole field intensification by convection vortices in a rotating spherical shell
    Ishihara, N
    Kida, S
    FLUID DYNAMICS RESEARCH, 2002, 31 (04) : 253 - 274
  • [22] Jet phenomena above null points of the coronal magnetic field
    Filippov, B.
    Koutchmy, S.
    Golub, L.
    GEOMAGNETISM AND AERONOMY, 2009, 49 (08) : 1109 - 1112
  • [23] Dynamics of the Jupiter Trojans with Saturn's perturbation when the two planets are in migration
    Hou, Xiyun
    Scheeres, Daniel J.
    Liu, L.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2016, 125 (04) : 451 - 484
  • [24] Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field
    Sandeep, N.
    Animasaun, I. L.
    ALEXANDRIA ENGINEERING JOURNAL, 2017, 56 (02) : 263 - 269
  • [25] Constraining Jupiter's internal flows using Juno magnetic and gravity measurements
    Galanti, E.
    Cao, H.
    Kaspi, Y.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (16) : 8173 - 8181
  • [26] A dynamo model for axisymmetrizing Saturn's magnetic field
    Stanley, S.
    GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [27] Characterising Jupiter's dynamo radius using its magnetic energy spectrum
    Tsang, Yue-Kin
    Jones, Chris A.
    EARTH AND PLANETARY SCIENCE LETTERS, 2020, 530
  • [28] Relevance of jet magnetic field structure for blazar axionlike particle searches
    Davies, James
    Meyer, Manuel
    Cotter, Garret
    PHYSICAL REVIEW D, 2021, 103 (02)
  • [29] No Evidence for Time Variation in Saturn's Internal Magnetic Field
    Moore, Kimberly M. M.
    Bolton, Bryce
    Cao, Hao
    Dougherty, Michele K.
    Bloxham, Jeremy
    PLANETARY SCIENCE JOURNAL, 2021, 2 (05):
  • [30] Simulating Jupiter's weather layer. Part I: Jet spin-up in a dry atmosphere
    Young, Roland M. B.
    Read, Peter L.
    Wang, Yixiong
    ICARUS, 2019, 326 : 225 - 252