Multifunctional ZrF4 nanocoating for improving lithium storage performances in layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2

被引:23
|
作者
Zhang, Xiaoping [1 ,2 ]
Yang, Yue [3 ]
Sun, Shuwei [1 ,2 ]
Wu, Qing [1 ,2 ]
Wan, Ning [1 ,2 ]
Pan, Du [1 ,2 ]
Bai, Ying [1 ,2 ]
机构
[1] Henan Univ, Key Lab Photovolta Mat Henan Prov, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Phys & Elect, Kaifeng 475004, Peoples R China
[3] Jilin Univ, Coll Elect Sci & Engn, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrochemical performances; Lithium-rich; Nanocoating; SURFACE MODIFICATION; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; X-RAY; LI; ELECTRODES; IMPROVEMENT; OXIDES; LINI1/3CO1/3MN1/3O2;
D O I
10.1016/j.ssi.2015.11.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered Li[Li0.2Ni0.17Co0.07Mn0.56]02 is successfully synthesized by a sol-gel method and is further coated with ZrF4 (0.5, 1, 2 and 3 wt.%) through a simple wet chemical strategy. Physical characterizations indicate that the ZrF4 nanocoating layers have little impact on cathode structure. Comparison of electrochemical performances demonstrates that 1 wt.% ZrF4 modified electrode exhibits the highest reversible capacity (193 mAh g(-1)) and best cycling performance (capacity retention of 89%) after 100 cycles at 0.1 C. Electrochemical impedance spectroscopy (EIS) analysis reveals that charge transfer resistance grows much slower after coating. Fourier transform infrared (FTIR) results further confirm that the surface ZrF4 effectively suppresses the fast growth of solid electrolyte interface (SEI) film. The improved electrochemical properties are thus attributed to the multifunctional ZrF4 nanocoating layer, which not only suppresses the side reaction(s) and oxygen loss, but also accelerates the lithium ion transportation due to the reduced resistance. Additionally, differential scanning calorimetry (DSC) tests show that the ZrF4 layer also helps in enhancing the thermal stability. This work provides a new insight into surface modification in achieving high energy cathodes for the next-generation lithium-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 13
页数:7
相关论文
共 50 条
  • [21] Synthesis and Electrochemical Performance of Li-rich Cathode Material Li[Li0.2Ni0.16Mn0.56Co0.06Al0.02]O2 in the Lithium-Ion Battery
    Zhang Hai-Lang
    Ye Yan-Yan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (12): : 10718 - 10725
  • [22] A novel architecture designed for lithium rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 oxides for lithium-ion batteries
    He, Zhenjiang
    Wang, Zhixing
    Huang, Zimo
    Chen, Hao
    Li, Xinhai
    Guo, Huajun
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (32) : 16817 - 16823
  • [23] Improved electrochemical performances of yttrium oxyfluoride-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion batteries
    Hao, Yaxin
    Yang, Fangning
    Luo, Didi
    Tian, Jianhua
    Shan, Zhongqiang
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (04) : 1239 - 1246
  • [24] LiLaPO4-coated Li[Ni0.5Co0.2Mn0.3]O2 and AlF3-coated Li[Ni0.5Co0.2Mn0.3]O2 blend composite for lithium ion batteries
    Song, Han Gab
    Park, Yong Joon
    MATERIALS RESEARCH BULLETIN, 2012, 47 (10) : 2843 - 2846
  • [25] Enhanced electrochemical performance of Li-rich Li[Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 cathode materials for lithium ion batteries by Li1.13Mn0.47Ni0.2Co0.2O2 coating
    Zhao, Li
    Sun, Yingying
    Song, Kexin
    Ding, Fei
    IONICS, 2020, 26 (09) : 4455 - 4462
  • [26] Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries
    Yang, Shu-qi
    Wang, Peng-bo
    Wei, Han-xin
    Tang, Lin-bo
    Zhang, Xia-hui
    He, Zhen-jiang
    Li, Yun-jiao
    Tong, Hui
    Zheng, Jun-chao
    NANO ENERGY, 2019, 63
  • [27] Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating
    Wang, Zhiyuan
    Liu, Enzuo
    Guo, Lichao
    Shi, Chunsheng
    He, Chunnian
    Li, Jiajun
    Zhao, Naiqin
    SURFACE & COATINGS TECHNOLOGY, 2013, 235 : 570 - 576
  • [28] Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries
    Yuan, W.
    Zhang, H. Z.
    Liu, Q.
    Li, G. R.
    Gao, X. P.
    ELECTROCHIMICA ACTA, 2014, 135 : 199 - 207
  • [29] Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery
    Lin, Jing
    Mu, Daobin
    Jin, Ying
    Wu, Borong
    Ma, Yunfeng
    Wu, Feng
    JOURNAL OF POWER SOURCES, 2013, 230 : 76 - 80
  • [30] Enhanced electrochemical performance of Li1.2(Ni0.17Co0.07Mn0.56)O2 via constructing double protection layers by facile phytic acid treatment
    Yi, Li
    Jiang, Haihu
    Liang, Kui
    CERAMICS INTERNATIONAL, 2022, 48 (03) : 3374 - 3382