An a posteriori error estimate and a comparison theorem for the nonconforming P 1 element

被引:19
作者
Braess, Dietrich [1 ]
机构
[1] Ruhr Univ Bochum, Fac Math, D-44780 Bochum, Germany
关键词
Hypercircle method; Crouzeix-Raviart element; Raviart-Thomas element;
D O I
10.1007/s10092-009-0003-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A posteriori error estimates for the nonconforming P (1) element are easily determined by the hypercircle method via Marini's observation on the relation to the mixed method of Raviart-Thomas. Another tool is Ainsworth's application of the hypercircle method to mixed methods. The relation on the finite element solutions is also extended to an a priori relation of the errors, and the errors of four different finite element methods can be compared.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 7 条
[1]   A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements [J].
Ainsworth, Mark .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :189-204
[2]  
[Anonymous], RAIRO MODEL MATH ANA
[3]  
AUBIN JP, 1971, NUMERICAL SOLUTION P, V2, P1
[4]   Equilibrated residual error estimates are p-robust [J].
Braess, Dietrich ;
Pillwein, Veronika ;
Schoeberl, Joachim .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (13-14) :1189-1197
[5]  
Braess Dietrich., 2007, Finite Elemente
[6]   AN INEXPENSIVE METHOD FOR THE EVALUATION OF THE SOLUTION OF THE LOWEST ORDER RAVIART-THOMAS MIXED METHOD [J].
MARINI, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (03) :493-496
[7]   APPROXIMATIONS IN ELASTICITY BASED ON THE CONCEPT OF FUNCTION SPACE [J].
PRAGER, W ;
SYNGE, JL .
QUARTERLY OF APPLIED MATHEMATICS, 1947, 5 (03) :241-269