A deep learning approach to segmentation of nasopharyngeal carcinoma using computed tomography

被引:18
作者
Bai, Xiaoyu [1 ,2 ]
Hu, Yan [2 ]
Gong, Guanzhong [3 ]
Yin, Yong [3 ]
Xia, Yong [1 ,2 ]
机构
[1] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aerosp Ground Ocean Big, Xian 710072, Peoples R China
[3] Shandong Univ, Shandong Canc Hosp, Jinan 250117, Peoples R China
基金
中国国家自然科学基金;
关键词
Nasopharyngeal carcinoma segmentation; Deep learning; ResNeXt-50; U-Net; Computed tomography;
D O I
10.1016/j.bspc.2020.102246
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automated segmentation of Nasopharyngeal carcinoma (NPC) plays a critical role in the radiotherapy or chemoradiotherapy for this cancer. Despite their improved performance, most deep learning models designed for this segmentation task use either magnetic resonance imaging (MRI) or multimodality data as input. In this paper, we propose a deep learning based algorithm called NPC-Seg for the segmentation of NPC using computed tomography (CT), which is less expensive and more available than MRI. This algorithm uses the location-to-segmentation framework. In the location step, it fine-tunes the pre-trained ResNeXt-50 U-Net with a newly proposed recall preserved loss to roughly segment the gross tumor volume (GTV) of each NPC. In the segmentation step, it fine-tunes the ResNeXt-50 U-Net again, but using the Dice loss, to segment the bounding box region detected in the location step on a patch-by-patch basis. We have evaluated the proposed NPC-Seg algorithm on the StructSeg-NPC dataset. Our algorithm achieves the Dice similarity coefficient (DSC) of 62.88 +/- 8.12% on 50 training data in the ten-fold cross-validation, substantially outperforming three existing deep learning methods, and also achieves an average DSC of 61.81% on the testing dataset in the online validation.
引用
收藏
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 2020, IEEE T MED IMAGING
[2]  
[Anonymous], 2020, AUTOMATIC STRUCTURE
[3]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[4]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[5]   Nasopharyngeal carcinoma segmentation using a region growing technique [J].
Chanapai, Weerayuth ;
Bhongmakapat, Thongchai ;
Tuntiyatorn, Lojana ;
Ritthipravat, Panrasee .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2012, 7 (03) :413-422
[6]  
Chen H., 2018, ARXIV181210033
[7]   Nasopharyngeal carcinoma [J].
Chen, Yu-Pei ;
Chan, Anthony T. C. ;
Quynh-Thu Le ;
Blanchard, Pierre ;
Sun, Ying ;
Ma, Jun .
LANCET, 2019, 394 (10192) :64-80
[8]  
Christ Patrick Ferdinand, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P415, DOI 10.1007/978-3-319-46723-8_48
[9]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[10]   3D segmentation of nasopharyngeal carcinoma from CT images using cascade deep learning [J].
Daoud, Bilel ;
Morooka, Ken'ichi ;
Kurazume, Ryo ;
Leila, Farhat ;
Mnejja, Wafa ;
Daoud, Jamel .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 77