New approach to approximate the solution for the system of fractional order Volterra integro-differential equations

被引:27
作者
Akbar, Muhammad [1 ]
Nawaz, Rashid [1 ]
Ahsan, Sumbal [1 ]
Nisar, Kottakkaran Sooppy [2 ]
Abdel-Aty, Abdel-Haleem [3 ,4 ]
Eleuch, Hichem [5 ,6 ,7 ]
机构
[1] Abdul Wali Khan Univ Mardan, Dept Math, Khyber Pakhtunkhwa, Pakistan
[2] Prince Sattam bin Abdulaziz Univ, Dept Math, Coll Arts & Sci, Wadi Aldawaser, Saudi Arabia
[3] Univ Bisha, Dept Phys, Coll Sci, POB 344, Bisha 61922, Saudi Arabia
[4] Al Azhar Univ, Phys Dept, Fac Sci, Assiut 71524, Egypt
[5] Univ Sharjah, Dept Appl Phys & Astron, Sharjah, U Arab Emirates
[6] Abu Dhabi Univ, Coll Arts & Sci, Abu Dhabi 59911, U Arab Emirates
[7] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
关键词
Fractional derivative; OHAM; System of fractional order integro-differential equations; Approximate solution; Caputo derivatives; HOMOTOPY ASYMPTOTIC METHOD; DYNAMIC-RESPONSE ANALYSIS; DIFFERENTIAL-EQUATIONS; POROUS CHANNEL; CALCULUS; FLOW; MODEL;
D O I
10.1016/j.rinp.2020.103453
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main aim of this article is the extension of Optimal Homotopy Asymptotic Method to the system of fractional order integro-differential equations. The systems of fractional order Volterra integro-differential equations (SFIDEs) are taken as test examples. The fractional order derivatives are defined in the Caputo fractional form and the optimal values of auxiliary constants are calculated using the well-known method of least squares. The results obtained by proposed scheme are very encouraging and show close resemblance with exact values. Hence it will be more appealing for the researchers to apply the proposed scheme to different fractional order systems arising in different fields of sciences especially in fluid dynamics and bio-engineering.
引用
收藏
页数:10
相关论文
共 55 条
[1]  
Abdel-Khalek S, 2020, INF SCI LETT, V9, P83
[2]   Optical soliton solutions for a space-time fractional perturbed nonlinear Schr?dinger equation arising in quantum physics [J].
Abdoud, M. A. ;
Owyed, Saud ;
Abdel-Aty, A. ;
Raffan, Bahaaudin M. ;
Abdel-Khalek, S. .
RESULTS IN PHYSICS, 2020, 16
[3]   Thermal stratification of rotational second-grade fluid through fractional differential operators [J].
Abro, Kashif Ali ;
Siyal, Ambreen ;
Atangana, Abdon .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (05) :3667-3676
[4]   A Numerical Algorithm for the Solutions of ABC Singular Lane-Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method [J].
Abu Arqub, Omar ;
Osman, Mohamed S. ;
Abdel-Aty, Abdel-Haleem ;
Mohamed, Abdel-Baset A. ;
Momani, Shaher .
MATHEMATICS, 2020, 8 (06)
[5]  
[Anonymous], 2020, APPL MATH INF SCI, DOI DOI 10.11948/20180322
[6]  
[Anonymous], 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations
[7]   FRACTIONAL CALCULUS IN THE TRANSIENT ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
TORVIK, PJ .
AIAA JOURNAL, 1985, 23 (06) :918-925
[8]   Long memory processes and fractional integration in econometrics [J].
Baillie, RT .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :5-59
[9]  
Chakraverty S., 2020, Synth. Lect. Math. Stat, V12, P1, DOI DOI 10.2200/S00976ED1V01Y201912MAS031
[10]   Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall [J].
Dogonchi, A. S. ;
Ismael, Muneer A. ;
Chamkha, Ali J. ;
Ganji, D. D. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (06) :3485-3497