Tight rank lower bounds for the Sherali-Adams proof system

被引:18
作者
Dantchev, Stefan [1 ]
Martin, Barnaby [1 ]
Rhodes, Mark [1 ]
机构
[1] Univ Durham, Dept Comp Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Propositional proof complexity; Lift-and-project methods; HIERARCHY;
D O I
10.1016/j.tcs.2009.01.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a proof (more accurately, refutation) system based on the Sherali-Adams (SA) operator associated with integer linear programming. If F is a CNF contradiction that admits a Resolution refutation of width k and size s. then we prove that the SA rank of F is <= k and the SA size of F is <= (k + 1)s + 1. We establish that the SA rank of both the Pigeonhole Principle PHPn-1n and the Least Number Principle LNPn is n - 2. Since the SA refutation system rank-simulates the refutation system of Lovasz-Schrijver without semidefinite cuts (LS), we obtain as a corollary linear rank lower bounds for both of these principles in LS. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:2054 / 2063
页数:10
相关论文
共 15 条
[1]   THE COMPLEXITY OF THE PIGEONHOLE PRINCIPLE [J].
AJTAI, M .
COMBINATORICA, 1994, 14 (04) :417-433
[2]  
ALEKHNOVICH M, 2005, P 37 ANN ACM S THEOR, P294, DOI DOI 10.1145/1060590.1060634
[3]  
BONET ML, 1999, P 40 ANN S FDN COMP, P422
[4]  
Buresh-Oppenheim Joshua, 2006, Theory of Computing, V2, P65
[5]   Edmonds polytopes and a hierarchy of combinatorial problems (Reprinted from Discrete Mathematics, vol 4, pg 305-337, 1973) [J].
Chvátal, V .
DISCRETE MATHEMATICS, 2006, 306 (10-11) :886-904
[6]   Rank Complexity Gap for Lovasz-Schrijver and Sherali-Adams Proof Systems [J].
Dantchev, Stefan .
STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, :311-317
[7]  
GOMORY RE, 1960, P S APPL MATH, V10
[8]  
GRIGORIEV DY, 2002, P 19 ANN S THEOR ASP, P419
[9]   THE INTRACTABILITY OF RESOLUTION [J].
HAKEN, A .
THEORETICAL COMPUTER SCIENCE, 1985, 39 (2-3) :297-308
[10]  
LAURENT M., 2001, Technical report PNA-R0108