Goodness-of-fit tests for fuzzy data

被引:18
|
作者
Grzegorzewski, Przemyslaw [1 ,2 ]
Szymanowski, Hubert [3 ]
机构
[1] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00662 Warsaw, Poland
[3] Polish Acad Sci, Inst Comp Sci, PL-01248 Warsaw, Poland
关键词
Anderson-Darling test; Cramer-von Mises test; Fuzzy data; Fuzzy test; Goodness-of-fit test; Kolmogorov test; RANDOM-VARIABLES; HYPOTHESES;
D O I
10.1016/j.ins.2014.08.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the key problems in statistics is to get information about the form of the population from which a sample is drawn. To check compatibility of a set of observed values with a presumed distribution one can apply various, so called, goodness-of-fit tests. It seems that the goodness-of-fit testing problem becomes much more complicated in the presence of imprecise observations. Actually, although many statistical procedure dedicated for specified types of distributions were generalized to fuzzy environment, still there are not too many tools that help under fuzzy data from the unknown distribution. Therefore, in the paper we suggest how to generalize the well-known one-sample goodness-of-fit tests based on the empirical distribution function, like the Kolmogorov test, the Cramer-von Mises test or the Anderson-Darling test, for fuzzy data. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:374 / 386
页数:13
相关论文
共 50 条