The Dirichlet problem for a prescribed mean curvature equation

被引:0
作者
Tsukamoto, Yuki [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Tokyo 1528551, Japan
关键词
Prescribed mean curvature; Fixed point theorem; SURFACES; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a prescribed mean curvature problem where we seek a surface whose mean curvature vector coincides with the normal component of a given vector field. We prove that the problem has a solution near a graphical minimal surface if the prescribed vector field is sufficiently small in a dimensionally sharp Sobolev norm.
引用
收藏
页码:325 / 337
页数:13
相关论文
共 13 条
[1]  
[Anonymous], 1989, Weakly differentiable functions
[2]  
Bergner M., 2008, ANAL MUNICH, V28, P149
[4]   DIRICHLET PROBLEM FOR SURFACES OF PRESCRIBED MEAN CURVATURE [J].
GIAQUINTA, M .
MANUSCRIPTA MATHEMATICA, 1974, 12 (01) :73-86
[5]  
Gilbarg David, 1977, Elliptic Partial Differential Equations of Second Order, V224
[7]   On the Dirichlet problem of prescribed mean curvature equations without H-convexity condition [J].
Hayasida, K ;
Nakatani, M .
NAGOYA MATHEMATICAL JOURNAL, 2000, 157 :177-209
[8]  
JENKINS H, 1968, J REINE ANGEW MATH, V229, P170
[9]   The prescribed mean curvature equation in weakly regular domains [J].
Leonardi, Gian Paolo ;
Saracco, Giorgio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2018, 25 (02)
[10]   Remark on the anisotropic prescribed mean curvature equation on arbitrary domains [J].
Marquardt, Thomas .
MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (03) :507-511