Planning as Inference in Epidemiological Dynamics Models

被引:1
作者
Wood, Frank [1 ,2 ]
Warrington, Andrew [3 ]
Naderiparizi, Saeid [1 ]
Weilbach, Christian [1 ]
Masrani, Vaden [1 ]
Harvey, William [1 ]
Scibior, Adam [1 ]
Beronov, Boyan [1 ]
Grefenstette, John [4 ]
Campbell, Duncan [4 ]
Nasseri, S. Ali [1 ]
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC, Canada
[2] Mila Inst, Montreal, PQ, Canada
[3] Univ Oxford, Dept Engn Sci, Oxford, England
[4] Epistemix Inc, Pittsburgh, PA USA
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2022年 / 4卷
基金
加拿大自然科学与工程研究理事会;
关键词
public health preparedness; epidemiological dynamics; Bayesian inference; probabilistic programming; COVID-19; APPROXIMATE BAYESIAN COMPUTATION; PREDICTIVE CONTROL; INFLUENZA; TRANSMISSION;
D O I
10.3389/frai.2021.550603
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we demonstrate how to automate parts of the infectious disease-control policy-making process via performing inference in existing epidemiological models. The kind of inference tasks undertaken include computing the posterior distribution over controllable, via direct policy-making choices, simulation model parameters that give rise to acceptable disease progression outcomes. Among other things, we illustrate the use of a probabilistic programming language that automates inference in existing simulators. Neither the full capabilities of this tool for automating inference nor its utility for planning is widely disseminated at the current time. Timely gains in understanding about how such simulation-based models and inference automation tools applied in support of policy-making could lead to less economically damaging policy prescriptions, particularly during the current COVID-19 pandemic.
引用
收藏
页数:27
相关论文
共 108 条
  • [1] Anastassopoulou C, 2020, medRxiv, DOI [10.1101/2020.02.11.20022186, 10.1101/2020.02.11.20022186, DOI 10.1101/2020.02.11.20022186]
  • [2] Arenas A, 2020, medRxiv, DOI [10.1101/2020.03.21.20040022, 10.1101/2020.03.21.20040022, DOI 10.1101/2020.03.21.20040022]
  • [3] Developing agent-based models of complex health behaviour
    Badham, Jennifer
    Chattoe-Brown, Edmund
    Gilbert, Nigel
    Chalabi, Zaid
    Kee, Frank
    Hunter, Ruth F.
    [J]. HEALTH & PLACE, 2018, 54 : 170 - 177
  • [4] Baydin A. G., 2018, P INT C LEARNING REP, P1
  • [5] Baydin A. G., 2018, 32 C NEUR INF PROC S
  • [6] Implementation and applications of EMOD, an individual-based multi-disease modeling platform
    Bershteyn, Anna
    Gerardin, Jaline
    Bridenbecker, Daniel
    Lorton, Christopher W.
    Bloedow, Jonathan
    Baker, Robert S.
    Chabot-Couture, Guillaume
    Chen, Ye
    Fischle, Thomas
    Frey, Kurt
    Gauld, Jillian S.
    Hu, Hao
    Izzo, Amanda S.
    Klein, Daniel J.
    Lukacevic, Dejan
    McCarthy, Kevin A.
    Miller, Joel C.
    Ouedraogo, Andre Lin
    Perkins, T. Alex
    Steinkraus, Jeffrey
    ten Bosch, Quirine A.
    Ting, Hung-Fu
    Titova, Svetlana
    Wagner, Bradley G.
    Welkhoff, Philip A.
    Wenger, Edward A.
    Wiswell, Christian N.
    [J]. PATHOGENS AND DISEASE, 2018, 76 (05):
  • [7] Bertsekas D., 2019, COMPUTER SCI MATH
  • [8] Bishop C. M., 2006, PATTERN RECOGN
  • [9] Blackwood JC, 2018, INTRO COMPARTMENTAL, DOI [10.30707/LiB5.1Blackwood, DOI 10.30707/LIB5.1BLACKWOOD]
  • [10] Risk Assessment of Novel Coronavirus COVID-19 Outbreaks Outside China
    Boldog, Peter
    Tekeli, Tamas
    Vizi, Zsolt
    Denes, Attila
    Bartha, Ferenc A.
    Rost, Gergely
    [J]. JOURNAL OF CLINICAL MEDICINE, 2020, 9 (02)