Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells

被引:130
作者
Neo, Darren C. J. [1 ]
Cheng, Cheng [1 ]
Stranks, Samuel D. [2 ]
Fairclough, Simon M. [1 ]
Kim, Judy S. [1 ]
Kirkland, Angus I. [1 ]
Smith, Jason M. [1 ]
Snaith, Henry J. [2 ]
Assender, Hazel E. [1 ]
Watt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
NANOCRYSTAL SOLIDS; PBS NANOCRYSTALS; PHOTOVOLTAICS; RECOMBINATION; FABRICATION; SCATTERING; CHEMISTRY; PBSE/PBS; SELENIDE; QDS;
D O I
10.1021/cm501595u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cation-exchange has been used to synthesize PbS/CdS core/shell colloidal quantum dots from PbS starting cores. These were then incorporated as the active material in solar cell test devices using a solution-based, air-ambient, layer-by-layer spin coating process. We show that core/shell colloidal quantum dots can replace their unshelled counterparts with a similar band gap as the active layer in a solar cell device, leading to an improvement in open circuit voltage from 0.42 to 0.66 V. This improvement is attributed to a reduction in recombination as a result of the passivating shell. However, this increase comes at the expense of short circuit current by creating a barrier for transport. To overcome this, we first optimize the shell thickness by varying the conditions for cation-exchange to form the thinnest shell layer possible that provides sufficient surface passivation. Next, ligand exchange with a combination of halide and bifunctional organic molecules is used in conjunction with the core/shell strategy. Power conversion efficiencies of 5.6 +/- 0.4% have been achieved with a simple heterojunction device architecture.
引用
收藏
页码:4004 / 4013
页数:10
相关论文
共 68 条
[21]   The Photothermal Stability of PbS Quantum Dot Solids [J].
Ihly, Rachelle ;
Tolentino, Jason ;
Liu, Yao ;
Gibbs, Markelle ;
Law, Matt .
ACS NANO, 2011, 5 (10) :8175-8186
[22]  
Ip AH, 2012, NAT NANOTECHNOL, V7, P577, DOI [10.1038/NNANO.2012.127, 10.1038/nnano.2012.127]
[23]   Enhanced Mobility-Lifetime Products in PbS Colloidal Quantum Dot Photovoltaics [J].
Jeong, Kwang S. ;
Tang, Jiang ;
Liu, Huan ;
Kim, Jihye ;
Schaefer, Andrew W. ;
Kemp, Kyle ;
Levina, Larissa ;
Wang, Xihua ;
Hoogland, Sjoerd ;
Debnath, Ratan ;
Brzozowski, Lukasz ;
Sargent, Edward H. ;
Asbury, John B. .
ACS NANO, 2012, 6 (01) :89-99
[24]   Fabrication of All-Inorganic Nanocrystal Solids through Matrix Encapsulation of Nanocrystal Arrays [J].
Kinder, Erich ;
Moroz, Pavel ;
Diederich, Geoffrey ;
Johnson, Alexa ;
Kirsanova, Maria ;
Nemchinov, Alexander ;
O'Connor, Timothy ;
Roth, Dan ;
Zamkov, Mikhail .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (50) :20488-20499
[25]   Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids [J].
Klem, Ethan J. D. ;
Shukla, Harnik ;
Hinds, Sean ;
MacNeil, Dean D. ;
Levina, Larissa ;
Sargent, Edward H. .
APPLIED PHYSICS LETTERS, 2008, 92 (21)
[26]   Expanding the Chemical Versatility of Colloidal Nanocrystals Capped with Molecular Metal Chalcogenide Ligands [J].
Kovalenko, Maksym V. ;
Bodnarchuk, Maryna I. ;
Zaumseil, Jana ;
Lee, Jong-Soo ;
Talapin, Dmitri V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (29) :10085-10092
[27]   Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands [J].
Kovalenko, Maksym V. ;
Scheele, Marcus ;
Talapin, Dmitri V. .
SCIENCE, 2009, 324 (5933) :1417-1420
[28]  
Kramer I. J., 2013, CHEM REV
[29]   Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines [J].
Law, Matt ;
Luther, Joseph M. ;
Song, Oing ;
Hughes, Barbara K. ;
Perkins, Craig L. ;
Nozik, Arthur J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (18) :5974-5985
[30]   Colloidal semiconductor nanocrystals: the aqueous approach [J].
Lesnyak, Vladimir ;
Gaponik, Nikolai ;
Eychmueller, Alexander .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2905-2929