Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells

被引:130
作者
Neo, Darren C. J. [1 ]
Cheng, Cheng [1 ]
Stranks, Samuel D. [2 ]
Fairclough, Simon M. [1 ]
Kim, Judy S. [1 ]
Kirkland, Angus I. [1 ]
Smith, Jason M. [1 ]
Snaith, Henry J. [2 ]
Assender, Hazel E. [1 ]
Watt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
NANOCRYSTAL SOLIDS; PBS NANOCRYSTALS; PHOTOVOLTAICS; RECOMBINATION; FABRICATION; SCATTERING; CHEMISTRY; PBSE/PBS; SELENIDE; QDS;
D O I
10.1021/cm501595u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cation-exchange has been used to synthesize PbS/CdS core/shell colloidal quantum dots from PbS starting cores. These were then incorporated as the active material in solar cell test devices using a solution-based, air-ambient, layer-by-layer spin coating process. We show that core/shell colloidal quantum dots can replace their unshelled counterparts with a similar band gap as the active layer in a solar cell device, leading to an improvement in open circuit voltage from 0.42 to 0.66 V. This improvement is attributed to a reduction in recombination as a result of the passivating shell. However, this increase comes at the expense of short circuit current by creating a barrier for transport. To overcome this, we first optimize the shell thickness by varying the conditions for cation-exchange to form the thinnest shell layer possible that provides sufficient surface passivation. Next, ligand exchange with a combination of halide and bifunctional organic molecules is used in conjunction with the core/shell strategy. Power conversion efficiencies of 5.6 +/- 0.4% have been achieved with a simple heterojunction device architecture.
引用
收藏
页码:4004 / 4013
页数:10
相关论文
共 68 条
[1]   Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine [J].
Bae, Wan Ki ;
Joo, Jin ;
Padilha, Lazaro A. ;
Won, Jonghan ;
Lee, Doh C. ;
Lin, Qianglu ;
Koh, Weon-kyu ;
Luo, Hongmei ;
Klimov, Victor I. ;
Pietryga, Jeffrey M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :20160-20168
[2]   Charge Trapping Dynamics in PbS Colloidal Quantum Dot Photovoltaic Devices [J].
Bakulin, Artem A. ;
Neutzner, Stefanie ;
Bakker, Huib J. ;
Ottaviani, Laurent ;
Barakel, Damien ;
Chen, Zhuoying .
ACS NANO, 2013, 7 (10) :8771-8779
[3]  
Balasubramanian S., 2011, MRS P, V405
[4]   Thiols Passivate Recombination Centers in Colloidal Quantum Dots Leading to Enhanced Photovoltaic Device Efficiency [J].
Barkhouse, D. Aaron R. ;
Pattantyus-Abraham, Andras G. ;
Levina, Larissa ;
Sargent, Edward H. .
ACS NANO, 2008, 2 (11) :2356-2362
[5]   Third Generation Photovoltaics based on Multiple Exciton Generation in Quantum Confined Semiconductors [J].
Beard, Matthew C. ;
Luther, Joseph M. ;
Semonin, Octavi E. ;
Nozik, Arthur J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (06) :1252-1260
[6]   Band alignment determination of ZnO/PbSe heterostructure interfaces by synchrotron radiation photoelectron spectroscopy [J].
Cai, C. F. ;
Zhang, B. P. ;
Li, R. F. ;
Wu, H. Z. ;
Xu, T. N. ;
Zhang, W. H. ;
Zhu, J. F. .
EPL, 2012, 99 (03)
[7]   Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications [J].
Chaudhuri, Rajib Ghosh ;
Paria, Santanu .
CHEMICAL REVIEWS, 2012, 112 (04) :2373-2433
[8]   Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible organic solar cells [J].
Choi, Kwang-Hyuk ;
Jeong, Jin-A ;
Kang, Jae-Wook ;
Kim, Do-Guen ;
Kim, Jong Kuk ;
Na, Seok-In ;
Kim, Dong-Yu ;
Kim, Seok-Soon ;
Kim, Han-Ki .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (08) :1248-1255
[9]   Preventing Interfacial Recombination in Colloidal Quantum Dot Solar Cells by Doping the Metal Oxide [J].
Ehrler, Bruno ;
Musselman, Kevin P. ;
Boehm, Marcus L. ;
Morgenstern, Frederik S. F. ;
Vaynzof, Yana ;
Walker, Brian J. ;
MacManus-Driscoll, Judith L. ;
Greenham, Neil C. .
ACS NANO, 2013, 7 (05) :4210-4220
[10]   Core/Shell PbSe/PbS QDs TiO2 Heterojunction Solar Cell [J].
Etgar, Lioz ;
Yanover, Diana ;
Capek, Richard Karel ;
Vaxenburg, Roman ;
Xue, Zhaosheng ;
Liu, Bin ;
Nazeeruddin, Mohammad Khaja ;
Lifshitz, Efrat ;
Graetzel, Michael .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (21) :2736-2741