Critical exponents in stochastic sandpile models

被引:34
作者
Chessa, A
Vespignani, A
Zapperi, S
机构
[1] Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy
[2] Univ Cagliari, Unita INFM, I-09124 Cagliari, Italy
[3] ICTP, Abdus Salam Int Ctr Theorect Phys, I-34100 Trieste, Italy
[4] ESPCI, PMMH, F-75234 Paris 05, France
关键词
D O I
10.1016/S0010-4655(99)00338-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present large scale simulations of a stochastic sandpile model in two dimensions. We use momentum analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. The general picture resulting from our analysis allows us to characterize the large scale behavior of the present model with great accuracy. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:299 / 302
页数:4
相关论文
共 21 条
[1]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[2]   Universality in sandpile models [J].
BenHur, A ;
Biham, O .
PHYSICAL REVIEW E, 1996, 53 (02) :R1317-R1320
[3]   Mean-field behavior of the sandpile model below the upper critical dimension [J].
Chessa, A ;
Marinari, E ;
Vespignani, A ;
Zapperi, S .
PHYSICAL REVIEW E, 1998, 57 (06) :R6241-R6244
[4]   Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality [J].
Corral, A ;
DiazGuilera, A .
PHYSICAL REVIEW E, 1997, 55 (03) :2434-2445
[5]   Rare events and breakdown of simple scaling in the Abelian sandpile model [J].
De Menech, M ;
Stella, AL ;
Tebaldi, C .
PHYSICAL REVIEW E, 1998, 58 (03) :R2677-R2680
[6]  
DHAR D, CONDMAT9808047
[7]   DYNAMIC RENORMALIZATION-GROUP APPROACH TO SELF-ORGANIZED CRITICAL PHENOMENA [J].
DIAZGUILERA, A .
EUROPHYSICS LETTERS, 1994, 26 (03) :177-182
[8]   Self-organized criticality as an absorbing-state phase transition [J].
Dickman, R ;
Vespignani, A ;
Zapperi, S .
PHYSICAL REVIEW E, 1998, 57 (05) :5095-5105
[9]   SOME MORE SANDPILES [J].
GRASSBERGER, P ;
MANNA, SS .
JOURNAL DE PHYSIQUE, 1990, 51 (11) :1077-1098
[10]   Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension [J].
Lubeck, S ;
Usadel, KD .
PHYSICAL REVIEW E, 1997, 56 (05) :5138-5143