Electroanalytical Performance of a Freestanding Three-Dimensional Graphene Foam Electrode

被引:28
作者
Figueiredo-Filho, Luiz C. S. [1 ]
Brownson, Dale A. C. [2 ]
Fatibello-Filho, Orlando [1 ]
Banks, Craig E. [2 ]
机构
[1] Univ Fed Sao Carlos, Dept Quim, BR-13560970 Sao Carlos, SP, Brazil
[2] Manchester Metropolitan Univ, Fac Sci & Engn, Sch Sci & Environm, Div Chem & Environm Sci, Manchester M1 5GD, Lancs, England
关键词
Graphene electrochemistry; Three-dimensional electrode; Free-standing graphene foam; Electron transfer; Sensing; ELECTROCHEMISTRY; CARBON; ACID; PERSPECTIVE; DOPAMINE;
D O I
10.1002/elan.201300363
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electroanalytical performance of a freestanding three-dimensional (3D) quasi-graphene macrostructure is evaluated and benchmarked towards model analytes in aqueous solutions. Due to the freestanding 3D graphene foam exhibiting near-super-hydrophobicity and consequently giving rise to poor voltammetric signatures in aqueous solutions (Brownson et al., J. Mater. Chem. A, 2013, 1, 5962), we explore a 'washing' pretreatment procedure to reduce the hydrophobic behaviour of the 3D graphene macrostructure in order to try and allow its effective application in such cases. Herein, the electrochemical properties and resultant electroanalytical performance of the pretreated 3D graphene foam (3D-GF) is critically explored and compared to a freestanding 3D reticulated vitreous carbon (3D-RVC) foam alternative towards the sensing of a range of important analytes via cyclic voltammetry in aqueous solutions; namely, uric acid (UA), acetaminophen (AP) and dopamine hydrochloride (DA). It is found that the 3D-RVC exhibits improved electroanalytical characteristics with larger linear ranges and lower limit of detections achievable over that of the 3D-GF towards the target analytes. This work provides a vital insight into electroanalysis using 3D graphene and carbon foams.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 30 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications [J].
Alwarappan, Subbiah ;
Erdem, Arzum ;
Liu, Chang ;
Li, Chen-Zhong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20) :8853-8857
[3]   Nanomaterials application in electrochemical detection of heavy metals [J].
Aragay, Gemma ;
Merkoci, Arben .
ELECTROCHIMICA ACTA, 2012, 84 :49-61
[4]   The transport limited currents at insonated electrodes [J].
Banks, CE ;
Compton, RG ;
Fisher, AC ;
Henley, LE .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (12) :3147-3152
[5]  
Brownson D. A. C., 2013, NANOSCALE IN PRESS, DOI [10.1039/c3nrO5643k, DOI 10.1039/C3NR05643K]
[6]   Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
CHEMICAL COMMUNICATIONS, 2012, 48 (10) :1425-1427
[7]   Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media [J].
Brownson, Dale A. C. ;
Figueiredo-Filho, Luiz C. S. ;
Ji, Xiaobo ;
Gomez-Mingot, Maria ;
Iniesta, Jesus ;
Fatibello-Filho, Orlando ;
Kampouris, Dimitrious K. ;
Banks, Craig E. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) :5962-5972
[8]   Graphene electrochemistry: fundamental concepts through to prominent applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (21) :6944-6976
[9]   The electrochemistry of CVD graphene: progress and prospects [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (23) :8264-8281
[10]   The electrochemical performance of graphene modified electrodes: An analytical perspective [J].
Brownson, Dale A. C. ;
Foster, Christopher W. ;
Banks, Craig E. .
ANALYST, 2012, 137 (08) :1815-1823