Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems

被引:99
|
作者
Guo, Jiajia [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
Li, Geoffrey Ye [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
[3] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Decoding; Image reconstruction; Image coding; Downlink; Massive MIMO; 3GPP; Indexes; CSI feedback; massive MIMO; deep learning; overview; NEURAL-NETWORKS; CHANNEL ESTIMATION; COMPRESSION; MODEL; FRAMEWORK; OPTIMIZATION; RECIPROCITY; ALGORITHM; RECOVERY; DESIGN;
D O I
10.1109/TCOMM.2022.3217777
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many performance gains achieved by massive multiple-input and multiple-output depend on the accuracy of the downlink channel state information (CSI) at the transmitter (base station), which is usually obtained by estimating at the receiver (user equipment) and feeding back to the transmitter. The overhead of CSI feedback occupies substantial uplink bandwidth resources, especially when the number of transmit antennas is large. Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead. In this paper, a comprehensive overview of state-of-the-art research on this topic is provided, beginning with basic DL concepts widely used in CSI feedback and then categorizing and describing some existing DL-based feedback works. The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy. Works on joint design of CSI feedback with other communication modules are also introduced, and some practical issues, including bitstream generation, multirate feedback, imperfect feedback, NN complexity, training dataset collection, online training, and standardization effect, are discussed. At the end of the paper, some challenges and potential research directions associated with DL-based CSI feedback in future wireless communication systems are identified.
引用
收藏
页码:8017 / 8045
页数:29
相关论文
共 50 条
  • [1] Unsupervised Online Learning in Deep Learning-Based Massive MIMO CSI Feedback
    Cui, Yiming
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Han, Shuangfeng
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (09) : 2086 - 2090
  • [2] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [3] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [4] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [5] Learning-Based Integrated CSI Feedback and Localization in Massive MIMO
    Guo, Jiajia
    Lv, Yan
    Wen, Chao-Kai
    Li, Xiao
    Jin, Shi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 14988 - 15001
  • [6] Deep Learning-Based Massive MIMO CSI Feedback
    Li, Jialing
    Zhang, Qi
    Xin, Xiangjun
    Tao, Ying
    Tian, Qinghua
    Tian, Feng
    Chen, Dong
    Shen, Yufei
    Cao, Guixing
    Gao, Zihe
    Qian, Jinxi
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [7] Deep Learning-Based Antenna Selection and CSI Extrapolation in Massive MIMO Systems
    Lin, Bo
    Gao, Feifei
    Zhang, Shun
    Zhou, Ting
    Alkhateeb, Ahmed
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7669 - 7681
  • [8] CSI Feedback With Model-Driven Deep Learning of Massive MIMO Systems
    Guo, Jianhua
    Wang, Lei
    Li, Feng
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 547 - 551
  • [9] Deep Learning-Based CSI Feedback for RIS-Aided Massive MIMO Systems With Time Correlation
    Peng, Zhangjie
    Li, Zhaotian
    Liu, Ruijing
    Pan, Cunhua
    Yuan, Feiniu
    Wang, Jiangzhou
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (08) : 2060 - 2064
  • [10] Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems
    Sun, Qiang
    Zhao, Huan
    Wang, Jue
    Chen, Wei
    ENTROPY, 2022, 24 (04)