Subquasivarieties of regularized varieties

被引:9
作者
Bergman, C
Romanowska, A
机构
[1] IOWA STATE UNIV,DEPT MATH,AMES,IA 50011
[2] WARSAW UNIV TECHNOL,INST MATH,PL-00661 WARSAW,POLAND
关键词
D O I
10.1007/BF01233924
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the lattice of subquasivarieties of a regular variety. In particular we show that if V is a strongly irregular variety that is minimal as a quasivariety. then the smallest quasivariety containing both V and Sl (the variety of semilattices) is never equal to the regularization (V) over tilde of V. We use this result to describe the lattice of subquasivarieties of (V) over tilde in several special but quite common, cases and give a number of applications and examples.
引用
收藏
页码:536 / 563
页数:28
相关论文
共 46 条
[1]  
[Anonymous], 1956, NEDERL AKAD WET PROC
[2]  
[Anonymous], 1955, NEDERL AKAD WETENS A
[3]  
[Anonymous], 1985, MODAL THEORY
[4]  
[Anonymous], 1992, UNIVERSAL ALGEBRA QU
[5]   MINIMAL VARIETIES AND QUASIVARIETIES [J].
BERGMAN, C ;
MCKENZIE, R .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 48 :133-147
[6]  
BERGMAN C, 1988, C MATH SOC J BOLYAI, V54, P59
[7]  
BERMAN J, 1983, SPRINGER LECT NOTES, V1004, P10
[8]  
Burris S., 1981, COURSE UNIVERSAL ALG
[9]  
Clark D., 1976, ALGEBR UNIV, V6, P165
[10]  
CSAKANY B, 1975, ACTA SCI MATH, V37, P3