Development and Characterization of Multi-Scale Carbon Reinforced PPS Composites for Tribological Applications

被引:20
作者
Jain, Ayush [1 ]
Somberg, Julian [1 ]
Emami, Nazanin [1 ]
机构
[1] Lulea Univ Technol, Dept Engn Sci & Math, Div Machine Elements, S-97187 Lulea, Sweden
关键词
PPS; short carbon fiber; nanocomposites; PTFE; wear; friction; FIBER; BEHAVIOR; FRICTION; UHMWPE; PTFE; WEAR;
D O I
10.3390/lubricants7040034
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Polymer-based materials show to be of increasing interest in replacing metal based materials in tribological applications due to their low weight, cost and easy manufacturability. To further reduce the environmental impact of these bearing materials recyclability is becoming more crucial, stimulating the need for high performing thermoplastic materials. In this study, polyphenylene sulfide (PPS) composites were prepared in an effort to enhance its tribological properties. Short carbon fibres (SCFs), graphene oxide (GO) and nano diamonds (NDs) as well as polytetrafluoroethylene (PTFE) were used as micro and nano reinforcements. The addition of SCFs especially decreased the linear coefficient of thermal expansions while enhancing the micro hardness and wettability of the polymer. Under water lubricated conditions, a decrease in friction up to 56% and a reduction of wear rate in the order of 10(3) was observed by the addition of SCF. The reduction in friction and wear was further enhanced by the addition of NDs, providing a synergistic effect of the reinforcements in micro and nano scale. By testing the individual reinforcements under dry conditions, PTFE and SCFs were especially effective in reducing friction while the release and consequent abrasion of NDs and SCFs increased the wear under a higher contact pressure.
引用
收藏
页数:18
相关论文
共 28 条
[1]  
[Anonymous], TRIBOLOGY POLYM NANO
[2]  
ASHBY M.F., 2004, MAT SELECTION MECH D
[3]   Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites [J].
Ayatollahi, M. R. ;
Alishahi, E. ;
Doagou-R, S. ;
Shadlou, S. .
COMPOSITES PART B-ENGINEERING, 2012, 43 (08) :3425-3430
[4]  
Bahadur S, 2013, Tribol Polym Nanocompos Fri Wear Bulk Mater Coat, P23
[5]   FRICTION AND WEAR OF PTFE - A REVIEW [J].
BISWAS, SK ;
VIJAYAN, K .
WEAR, 1992, 158 (1-2) :193-211
[6]  
Brostow W., 2016, Materials: introduction and applications
[7]   Tribological properties of epoxy nanocomposites -: Part II. : A combinative effect of short carbon fibre with nano-TiO2 [J].
Chang, L ;
Zhang, Z .
WEAR, 2006, 260 (7-8) :869-878
[8]   Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites [J].
Chukov, D. I. ;
Stepashkin, A. A. ;
Maksimkin, A. V. ;
Tcherdyntsev, V. V. ;
Kaloshkin, S. D. ;
Kuskov, K. V. ;
Bugakov, V. I. .
COMPOSITES PART B-ENGINEERING, 2015, 76 :79-88
[9]   MICROSTRUCTURAL EFFICIENCY AND FRACTURE-TOUGHNESS OF SHORT FIBER THERMOPLASTIC MATRIX COMPOSITES [J].
FRIEDRICH, K .
COMPOSITES SCIENCE AND TECHNOLOGY, 1985, 22 (01) :43-74
[10]  
Friedrich K., 2018, ADV IND ENG POLY RES, V1, P3, DOI [DOI 10.1016/J.AIEPR.2018.05.001, 10.1016/j.aiepr.2018.05.001, 10.1016/J.AIEPR.2018.05.001]