On the Analyticity for the Generalized Quadratic Derivative Complex Ginzburg-Landau Equation

被引:5
|
作者
Huang, Chunyan [1 ]
机构
[1] Cent Univ Finance & Econ, Sch Math & Stat, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; MODULATION; OPERATORS; SPACES; LIMIT;
D O I
10.1155/2014/607028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the analytic property of the (generalized) quadratic derivative Ginzburg-Landau equation (1/2 <=alpha <= 1) in any spatial dimension n >= 1 with rough initial data. For 1/2 <alpha <= 1, we prove the analyticity of local solutions to the (generalized) quadratic derivative Ginzburg- Landau equation with large rough initial data in modulation spaces M-p-1(1-2 alpha) (1 <= p <=infinity). For alpha=1/2, we obtain the analytic regularity of global solutions to the fractional quadratic derivative Ginzburg-Landau equation with small initial data in B-infinity,1(0) (R-n) boolean AND M-infinity,1(0) (R-n). The strategy is to develop uniform and dyadic exponential decay estimates for the generalized Ginzburg- Landau semigroup e(-(a+i)t(-Delta)alpha) to overcome the derivative in the nonlinear term.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] The complex Ginzburg-Landau equation: an introduction
    Garcia-Morales, Vladimir
    Krischer, Katharina
    CONTEMPORARY PHYSICS, 2012, 53 (02) : 79 - 95
  • [12] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Yu. N. Ovchinnikov
    Journal of Experimental and Theoretical Physics, 1999, 88 : 398 - 405
  • [13] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Ovchinnikov, YN
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (02) : 398 - 405
  • [14] POTENTIAL FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    GRAHAM, R
    TEL, T
    EUROPHYSICS LETTERS, 1990, 13 (08): : 715 - 720
  • [15] The attractor of the stochastic generalized Ginzburg-Landau equation
    BoLing Guo
    GuoLian Wang
    DongLong Li
    Science in China Series A: Mathematics, 2008, 51 : 955 - 964
  • [16] ONSET OF CHAOS IN THE GENERALIZED GINZBURG-LANDAU EQUATION
    MALOMED, BA
    NEPOMNYASHCHY, AA
    PHYSICAL REVIEW A, 1990, 42 (10): : 6238 - 6240
  • [17] KINKS AND SOLITONS IN THE GENERALIZED GINZBURG-LANDAU EQUATION
    MALOMED, BA
    NEPOMNYASHCHY, AA
    PHYSICAL REVIEW A, 1990, 42 (10): : 6009 - 6014
  • [18] The attractor of the stochastic generalized Ginzburg-Landau equation
    GUO BoLing~1 WANG GuoLian~(2+) Li DongLong~3 1 Institute of Applied Physics and Computational Mathematics
    2 The Graduate School of China Academy of Engineering Physics
    3 Department of Information and Computer Science
    Science in China(Series A:Mathematics), 2008, (05) : 955 - 964
  • [19] PROXIMITY EFFECTS AND GENERALIZED GINZBURG-LANDAU EQUATION
    BLACKBURN, JA
    SMITH, HJT
    ROWELL, NL
    PHYSICAL REVIEW B, 1975, 11 (03): : 1053 - 1058
  • [20] Exponential attractors of a generalized Ginzburg-Landau equation
    Gao, Hongjun
    Applied Mathematics and Mechanics (English Edition), 1995, 16 (09) : 877 - 882