On the Analyticity for the Generalized Quadratic Derivative Complex Ginzburg-Landau Equation

被引:5
作者
Huang, Chunyan [1 ]
机构
[1] Cent Univ Finance & Econ, Sch Math & Stat, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; MODULATION; OPERATORS; SPACES; LIMIT;
D O I
10.1155/2014/607028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the analytic property of the (generalized) quadratic derivative Ginzburg-Landau equation (1/2 <=alpha <= 1) in any spatial dimension n >= 1 with rough initial data. For 1/2 <alpha <= 1, we prove the analyticity of local solutions to the (generalized) quadratic derivative Ginzburg- Landau equation with large rough initial data in modulation spaces M-p-1(1-2 alpha) (1 <= p <=infinity). For alpha=1/2, we obtain the analytic regularity of global solutions to the fractional quadratic derivative Ginzburg-Landau equation with small initial data in B-infinity,1(0) (R-n) boolean AND M-infinity,1(0) (R-n). The strategy is to develop uniform and dyadic exponential decay estimates for the generalized Ginzburg- Landau semigroup e(-(a+i)t(-Delta)alpha) to overcome the derivative in the nonlinear term.
引用
收藏
页数:11
相关论文
共 20 条
  • [1] [Anonymous], 2010, NONLINEAR PHYS SCI
  • [2] [Anonymous], 1976, GRUNDLEHREN MATH WIS
  • [3] [Anonymous], 2003, Technical Report
  • [4] [Anonymous], 2010, Theory of Function Spaces
  • [5] Unimodular Fourier multipliers for modulation spaces
    Benyi, Arpad
    Groechenig, Karlheinz
    Okoudjou, Kasso A.
    Rogers, Luke G.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (02) : 366 - 384
  • [6] Local well-posedness of nonlinear dispersive equations on modulation spaces
    Benyi, Arpad
    Okoudjou, Kasso A.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 549 - 558
  • [7] Chemin J. -Y., 1998, Perfect Incompressible Fluids
  • [8] Christ M., PREPRINT
  • [9] Grochenig K, 2001, Foundations of Time-Frequency Analysis. Applied andNumerical Harmonic Analysis, DOI DOI 10.1007/978-1-4612-0003-1
  • [10] Inviscid limit for the derivative Ginzburg-Landau equation with small data in modulation and Sobolev spaces
    Han, Lijia
    Wang, Baoxiang
    Guo, Boling
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (02) : 197 - 222