A posteriori error estimates for the problem of electrostatics with a dipole source

被引:7
|
作者
Rodriguez, A. Alonso [1 ]
Camano, J. [2 ,3 ]
Rodriguez, R. [3 ,4 ]
Valli, A. [1 ]
机构
[1] Univ Trento, Dept Math, I-38123 Povo, Trento, Italy
[2] Univ Catolica Santisima Concepcion, Fac Ingn, Concepcion, Chile
[3] Ctr Invest Ingn Matemat CI2MA, Santiago, Chile
[4] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
关键词
Residual based error estimator; Dipole source; Electrostatic; Finite elements L-P-error; Electroencephalography; ELLIPTIC PROBLEMS; EEG; MODELS; HEAD;
D O I
10.1016/j.camwa.2014.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Electroencephalography is a non-invasive technique for detecting brain activity from the measurement of the electric potential on the head surface. In mathematical terms, it reduces to an inverse problem in which the goal is to determine the source that has generated the electric field from measurements of boundary values of the electric potential. Since for reasonable models the time-variation of the electric and magnetic fields can be disregarded, the mathematical modeling of the corresponding forward problem leads to an electrostatics problem with a current dipole source. This is a singular problem, since the current dipole model involves first-order derivatives of a Dirac delta measure. Its solution lies in LP for 1 < p <3/2 in three dimensional domains and 1 < p < 2 in the two dimensional case. We consider the numerical approximation of the forward problem by means of standard piecewise linear continuous finite elements. We prove a priori error estimates in the LP norm. Then, we propose a residual-type a posteriori error estimator. We prove that it is reliable and efficient; namely, it yields global upper and local lower bounds for the corresponding norms of the error. Finally, we use this estimator to guide an adaptive procedure, which is experimentally shown to lead to an optimal order of convergence. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:464 / 485
页数:22
相关论文
共 50 条
  • [41] Maximum-norm a posteriori error estimates for an optimal control problem
    Otarola, Enrique
    Rankin, Richard
    Salgado, Abner J.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 997 - 1017
  • [42] Functional a posteriori error estimates for the reaction-convection- diffusion problem
    Nicaise S.
    Repin S.I.
    Journal of Mathematical Sciences, 2008, 152 (5) : 690 - 701
  • [43] A Posteriori Error Estimates for an Optimal Control Problem with a Bilinear State Equation
    Francisco Fuica
    Enrique Otárola
    Journal of Optimization Theory and Applications, 2022, 194 : 543 - 569
  • [44] A posteriori error estimates for Darcy's problem coupled with the heat equation
    Dib, Serena
    Girault, Vivette
    Hecht, Frederic
    Sayah, Toni
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2019, 53 (06) : 2121 - 2159
  • [45] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [46] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Deng, Yanling
    Wang, Fei
    Wei, Huayi
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [47] A Posteriori Error Estimates for an Optimal Control Problem with a Bilinear State Equation
    Fuica, Francisco
    Otarola, Enrique
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (02) : 543 - 569
  • [48] A posteriori estimates for the stokes problem
    Repin S.I.
    Journal of Mathematical Sciences, 2002, 109 (5) : 1950 - 1964
  • [49] POSTERIORI ERROR ESTIMATES IN ITERATIVE PROCEDURES
    OSTROWSKI, AM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) : 290 - 298
  • [50] A posteriori error estimates for Maxwell equations
    Schoeberl, Joachim
    MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 633 - 649