A posteriori error estimates for the problem of electrostatics with a dipole source

被引:7
|
作者
Rodriguez, A. Alonso [1 ]
Camano, J. [2 ,3 ]
Rodriguez, R. [3 ,4 ]
Valli, A. [1 ]
机构
[1] Univ Trento, Dept Math, I-38123 Povo, Trento, Italy
[2] Univ Catolica Santisima Concepcion, Fac Ingn, Concepcion, Chile
[3] Ctr Invest Ingn Matemat CI2MA, Santiago, Chile
[4] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
关键词
Residual based error estimator; Dipole source; Electrostatic; Finite elements L-P-error; Electroencephalography; ELLIPTIC PROBLEMS; EEG; MODELS; HEAD;
D O I
10.1016/j.camwa.2014.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Electroencephalography is a non-invasive technique for detecting brain activity from the measurement of the electric potential on the head surface. In mathematical terms, it reduces to an inverse problem in which the goal is to determine the source that has generated the electric field from measurements of boundary values of the electric potential. Since for reasonable models the time-variation of the electric and magnetic fields can be disregarded, the mathematical modeling of the corresponding forward problem leads to an electrostatics problem with a current dipole source. This is a singular problem, since the current dipole model involves first-order derivatives of a Dirac delta measure. Its solution lies in LP for 1 < p <3/2 in three dimensional domains and 1 < p < 2 in the two dimensional case. We consider the numerical approximation of the forward problem by means of standard piecewise linear continuous finite elements. We prove a priori error estimates in the LP norm. Then, we propose a residual-type a posteriori error estimator. We prove that it is reliable and efficient; namely, it yields global upper and local lower bounds for the corresponding norms of the error. Finally, we use this estimator to guide an adaptive procedure, which is experimentally shown to lead to an optimal order of convergence. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:464 / 485
页数:22
相关论文
共 50 条
  • [1] A posteriori error estimates in voice source recovery
    Leonov, A. S.
    Sorokin, V. N.
    VI INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2017, 937
  • [2] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601
  • [3] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [4] A posteriori error estimates for the generalized Stokes problem
    Repin S.
    Stenberg R.
    Journal of Mathematical Sciences, 2007, 142 (1) : 1828 - 1843
  • [5] A posteriori error estimates for a Maxwell type problem
    Anjam, I.
    Mali, O.
    Muzalevsky, A.
    Neittaanmaki, R.
    Repin, S.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (05) : 395 - 408
  • [6] A POSTERIORI ERROR-ESTIMATES FOR THE STOKES PROBLEM
    BANK, RE
    WELFERT, BD
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) : 591 - 623
  • [7] A Posteriori Error Estimates on Stars for Convection Diffusion Problem
    Achchab, B.
    Agouzal, A.
    Bouihat, K.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (07) : 67 - 72
  • [8] A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem
    Toni Sayah
    Computational and Applied Mathematics, 2021, 40
  • [9] On the functional type a posteriori error estimates for the stokes problem
    Gorshkova, E.
    Repin, S.
    ECCOMAS - Eur. Congr. Comput. Methods Appl. Sci. Eng.,
  • [10] A Posteriori Error Estimates for Maxwell's Eigenvalue Problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1250 - 1271