One step surface modification of gold nanoparticles for surface-enhanced Raman spectroscopy

被引:17
|
作者
Hong, Seongmin [1 ]
Li, Xiao [1 ]
机构
[1] Univ S Florida, Dept Chem, Tampa, FL 33620 USA
关键词
SERS; Surface modification; Gold nanoparticle; Linking molecule; Enhancement; SERS TAGS; SILVER NANOPARTICLES; SCATTERING; RECOGNITION; SIZE;
D O I
10.1016/j.apsusc.2013.09.149
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the drawbacks of surface enhanced Raman spectroscopy is that molecule of interest needs to be adsorbed or at least present near the surface of the substrates in order to achieve high enhancement. Unfortunately, majority molecules have no suitable functional groups interacting with the surface of the substrates and suffer poor SERS enhancement. In this work, one-step surface modification of gold nanoparticles (AuNPs) using linking molecules (LM) was demonstrated to attract the target molecules (TM) closer to the surface of AuNPs, hence lead to higher SERS enhancement. Here, 2-mercaptoethanol was employed as the linking molecule for its strong adsorption on AuNPs surface through a thiol group on one end and the intermolecular interaction between the LM and the TM through the hydroxyl group at the other end. Three target molecules were tested. For benzoic acid, no intensity difference was observed on the AuNPs modified with LM compared with the non-modified original ones. Interestingly, two times higher enhancement was observed from cyclohexanol TM on the modified surface. As much as four times higher enhancement was achieved with the modified Au surface from 1,3-cyclohexanediol. The stronger the interaction between the LM and TM is, the higher the SERS enhancement factor is. Also, the enhancement is highly dependent on the surface coverage of the LM. This simple modification method is important for most molecules which do not strongly interact with commonly used SERS substrates like Au or Ag nanoparticles and enables their possible characterization or detection using SERS. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:318 / 322
页数:5
相关论文
共 50 条
  • [1] Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy
    Matsukovich, A. S.
    Shabunya-Klyachkovskaya, E., V
    Sawczak, M.
    Grochowska, K.
    Maskowicz, D.
    Sliwinski, G.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2019, 18 (3-4)
  • [2] Surface-enhanced Raman scattering spectroscopy of dendrimer-entrapped gold nanoparticles
    He, Yan
    Yang, Lizhen
    Chen, Qiang
    SURFACE & COATINGS TECHNOLOGY, 2013, 228 : S137 - S141
  • [3] Gold Nanotriangles with Crumble Topping and their Influence on Catalysis and Surface-Enhanced Raman Spectroscopy
    Liebig, Ferenc
    Sarhan, Radwan M.
    Schmitt, Clemens N. Z.
    Thuenemann, Andreas F.
    Prietzel, Claudia
    Bargheer, Matias
    Koetz, Joachim
    CHEMPLUSCHEM, 2020, 85 (03): : 519 - 526
  • [4] Gold Nanoparticles Assembling on Smooth Silver Spheres for Surface-Enhanced Raman Spectroscopy
    Xia, Weiwei
    Sha, Jian
    Fang, Yanjun
    Lu, Ren
    Luo, Yafei
    Wang, Yewu
    LANGMUIR, 2012, 28 (12) : 5444 - 5449
  • [5] Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy
    Yang, Guang
    Nanda, Jagjit
    Wang, Boya
    Chen, Gang
    Hallinan, Daniel T., Jr.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) : 13457 - 13470
  • [6] The Variety of Substrates for Surface-enhanced Raman Spectroscopy
    Mikac, L.
    Gotic, M.
    Gebavi, H.
    Ivanda, M.
    PROCEEDINGS OF THE 2017 IEEE 7TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP), 2017,
  • [7] Gold Micro-Flowers: One-Step Fabrication of Efficient, Highly Reproducible Surface-Enhanced Raman Spectroscopy Platform
    Winkler, Katarzyna
    Kaminska, Agnieszka
    Wojciechowski, Tomasz
    Holyst, Robert
    Fialkowski, Marcin
    PLASMONICS, 2011, 6 (04) : 697 - 704
  • [8] CARBON NANOWALLS DECORATED WITH GOLD NANOPARTICLES FOR SURFACE-ENHANCED RAMAN SPECTROSCOPY
    Mihai, S.
    Cursaru, D. L.
    Matei, D.
    Dinescu, A.
    Stoica, S. D.
    Vizireanu, S.
    Dinescu, G.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2018, 13 (03) : 743 - 749
  • [9] Nanostructured and nanopatterned gold surfaces: application to the surface-enhanced Raman spectroscopy
    Bouvree, A.
    D'Orlando, A.
    Makiabadi, T.
    Martin, S.
    Louarn, G.
    Mevellec, J. Y.
    Humbert, B.
    GOLD BULLETIN, 2013, 46 (04) : 283 - 290