A New Algorithm about Transforming from Near-field to Far-field of Radar Target Scattering

被引:0
|
作者
Li Nanjing [1 ]
Hu Chufeng [1 ]
Li Ying [1 ]
Zhang Linxi [1 ]
机构
[1] NW Polytech Univ, UAV Specialty Tech Key Natl Lab, Xian 710072, Shaanxi, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to meet the approximate plane-wave irradiating condition, adequate large field or compact range system is needed for RCS measurement of large aircraft targets. However, an outside testing field site or a compact range system is very expensive, so a new RCS extrapolation method named Hankel algorithm based on near-distance testing has been presented. According to the fact that objective reflectivity spatial distribution is unchanged with measurement state in ISAR imaging, here the multi-scattering center model is built. Then, the height of stealth target is always short, and the far-field condition can easily be satisfied on vertical plane, so the incident spherical wave is equivalent to cylindrical wave. Once more, the relationship between far-field and near-field is deduced by regarding image of the target as secondary radiating source. Finally, the RCS of target can be obtained with the scattering information of near-field extrapolated at full angular aspect. Taking derivative of the near-field data with respect to frequency in algorithm, the error can be reduced in simplifying formula, and just meet the requirement of stepped-frequency system. The results of simulation and experiments show that the algorithm is precise as well as effective.
引用
收藏
页码:659 / 661
页数:3
相关论文
共 50 条
  • [21] A New Algorithm about Extrapolating Near Distance Field to Far-field of Large Size Antenna
    Zhao, Yongxin
    Wei, Jianjun
    Li, Nan-Jing
    Hu, Chu Feng
    PIERS 2010 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 187 - +
  • [22] Near-Field and Far-Field Sensitivities of LSPR Sensors
    Kaminska, I.
    Maurer, T.
    Nicolas, R.
    Renault, M.
    Lerond, T.
    Salas-Montiel, R.
    Herro, Z.
    Kazan, M.
    Niedziolka-Joensson, J.
    Plain, J.
    Adam, P. -M.
    Boukherroub, R.
    Szunerits, S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (17): : 9470 - 9476
  • [23] Near-field and far-field characteristics of a MQW waveguide
    Li, Lian Huang
    Guo, Fu Yuan
    JOURNAL OF MODERN OPTICS, 2013, 60 (19) : 1603 - 1606
  • [24] Visualization of near-field and far-field in the time domain
    So, P.P.M.
    Hu, E.Q.
    Fujii, M.
    Liu, W.
    Hoefer, W.J.R.
    IEEE MTT-S International Microwave Symposium Digest, 2000, 2 : 1121 - 1124
  • [25] ON COMPUTATION USING FAR-FIELD AND NEAR-FIELD PHOTOMETRY
    NGAI, PY
    ZHANG, JX
    QUAN, Y
    JOURNAL OF THE ILLUMINATING ENGINEERING SOCIETY, 1993, 22 (02): : 118 - 149
  • [26] Adaptive Downlink Localization in Near-Field and Far-Field
    Mylonopoulos, Georgios
    Makki, Behrooz
    Fodor, Gabor
    Buzzi, Stefano
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 1017 - 1022
  • [27] A simple description of near-field and far-field diffraction
    Temnuch, Wipawee
    Deachapunya, Sarayut
    Panthong, Pituk
    Chiangga, Surasak
    Srisuphaphon, Sorakrai
    WAVE MOTION, 2018, 78 : 60 - 67
  • [28] On Near-Field and Far-Field Correlations in Reverberation Chambers
    Chen, Xiaoming
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (01) : 74 - 76
  • [29] Near-field and far-field thermography in characterisation of microsystems
    Szeloch, RF
    Gotszalk, TP
    Radojewski, J
    Janus, P
    Pedrak, R
    Orawski, W
    MICRO MATERIALS, PROCEEDINGS, 2000, : 1257 - 1259
  • [30] FAR-FIELD AND NEAR-FIELD DEFORMATION AND GRANITE EMPLACEMENT
    VIGNERESSE, JL
    GEODINAMICA ACTA, 1995, 8 (04) : 211 - 227