ON THE CONTROLLABILITY OF THE 2-D VLASOV-STOKES SYSTEM

被引:1
|
作者
Moyano, Ivan [1 ]
机构
[1] Ecole Polytech, UMR 7640, Ctr Math Laurent Schwartz, Palaiseau, France
关键词
Vlasov-Stokes system; kinetic-theory; kinetic-fluid model; controllability; return method; POISSON SYSTEM; REGULARITY; AEROSOLS; LIMIT;
D O I
10.4310/CMS.2017.v15.n3.a7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove an exact controllability result for the Vlasov-Stokes system in the two-dimensional torus with small data by means of an internal control. We show that one can steer, in arbitrarily small time, any initial datum of class l(1) satisfying a smallness condition in certain weighted spaces to any final state satisfying the same conditions. The proof of the main result is achieved thanks to the return method and a Leray-Schauder fixed-point argument.
引用
收藏
页码:711 / 743
页数:33
相关论文
共 50 条
  • [41] Stability, controllability and observability of 2-D continuous-discrete systems
    Xiao, Y
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV: DIGITAL SIGNAL PROCESSING-COMPUTER AIDED NETWORK DESIGN-ADVANCED TECHNOLOGY, 2003, : 468 - 471
  • [42] Controllability and reachability of 2-D positive systems: A graph theoretic approach
    Fornasini, E
    Valcher, ME
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (03) : 576 - 585
  • [43] A CODE FOR THE SOLUTION OF THE VLASOV-FOKKER-PLANCK EQUATION IN 1-D OR 2-D
    EPPERLEIN, EM
    RICKARD, GJ
    BELL, AR
    COMPUTER PHYSICS COMMUNICATIONS, 1988, 52 (01) : 7 - 13
  • [44] Dynamics and control of the 2-d Navier-Stokes equations
    Smaoui, Nejib
    Zribi, Mohamed
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 237 : 461 - 473
  • [45] Symmetries and dynamics for 2-D Navier-Stokes flow
    Armbruster, D
    Nicolaenko, B
    Smaoui, N
    Chossat, P
    PHYSICA D, 1996, 95 (01): : 81 - 93
  • [46] A Remark on L∞ Solutions to the 2-D Navier–Stokes Equations
    Okihiro Sawada
    Yasushi Taniuchi
    Journal of Mathematical Fluid Mechanics, 2007, 9 : 533 - 542
  • [47] Periodic structure of 2-D Navier-Stokes equations
    Ma, T
    Wang, S
    JOURNAL OF NONLINEAR SCIENCE, 2005, 15 (03) : 133 - 158
  • [48] Periodic Structure of 2-D Navier-Stokes Equations
    T. Ma
    S. Wang
    Journal of Nonlinear Science, 2005, 15 : 133 - 158
  • [49] Controllability of a Stokes system with a diffusive boundary condition
    Buffe, Remi
    Takahashi, Takeo
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [50] 2-D sinusoidal amplitude estimation with application to 2-D system identification
    Li, HB
    Sun, W
    Stoica, P
    Li, J
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 1921 - 1924