Approximating the solution of nonlinear Hammerstein fuzzy integral equations

被引:47
作者
Bica, Alexandru Mihai [1 ]
Popescu, Constantin [1 ]
机构
[1] Univ Oradea, Dept Math & Informat, Oradea 410087, Romania
关键词
Fuzzy number; Fuzzy Hammerstein integral equations; The method of successive approximations; The convergence of the algorithm; Numerical stability; NUMERICAL-SOLUTION; 2ND KIND; EXISTENCE; NUMBERS;
D O I
10.1016/j.fss.2013.08.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we prove the convergence of the method of successive approximations used to approximate the solution of nonlinear Hammerstein fuzzy integral equations and define the notion of numerical stability of the algorithm with respect to the choice of the first iteration. This numerical stability is proved and finally, some numerical experiments confirm the theoretical results and illustrate the accuracy of the method. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 38 条
[1]   Numerical method for solving linear Fredholm fuzzy integral equations of the second kind [J].
Abbasbandy, S. ;
Babolian, E. ;
Alavi, M. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :138-146
[2]   The Adomian decomposition method applied to the Fuzzy system of Fredholm integral equations of the second kind [J].
Abbasbandy, S ;
Allahviranloo, T .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2006, 14 (01) :101-110
[3]  
Ahmadi M. Barkhordari, 2011, INT J IND MATH, V3, P67
[4]   Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle [J].
Araghi, M. A. Fariborzi ;
Parandin, N. .
SOFT COMPUTING, 2011, 15 (12) :2449-2456
[5]   A Computational Method for Fuzzy Volterra-Fredholm Integral Equations [J].
Attari, Hossein ;
Yazdani, Allahbakhsh .
FUZZY INFORMATION AND ENGINEERING, 2011, 3 (02) :147-156
[6]   Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method [J].
Babolian, E ;
Goghary, HS ;
Abbasbandy, S .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) :733-744
[7]  
Balachandran K, 2002, INDIAN J PURE AP MAT, V33, P329
[8]  
Balachandran K., 2005, J APPL MATH STOCH AN, V3, P333
[9]   Quadrature rules for integrals of fuzzy-number-valued functions [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2004, 145 (03) :359-380
[10]   Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm integral equations [J].
Bica, Alexandru Mihai .
INFORMATION SCIENCES, 2008, 178 (05) :1279-1292