Facet-Selective Nucleation and Conformal Epitaxy of Ge Shells on Si Nanowires

被引:17
作者
Nguyen, Binh-Minh [1 ,2 ]
Swartzentruber, Brian [3 ]
Ro, Yun Goo [2 ]
Dayeh, Shadi A. [1 ,2 ,4 ]
机构
[1] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[3] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA
[4] Univ Calif San Diego, Mat Sci Program, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Si; Ge; core/shell; nanowire; nucleation; facet; misfit dislocation; FET; CORE-SHELL; STRAIN RELAXATION; HOLE GAS; GROWTH; HETEROSTRUCTURES; COHERENCY; LIMITS;
D O I
10.1021/acs.nanolett.5b02313
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been explored before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. Synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors.
引用
收藏
页码:7258 / 7264
页数:7
相关论文
共 43 条
[1]   A Route to High-Quality Crystalline Coaxial Core/Multishell Ge@Si(GeSi)n and Si@(GeSi)n Nanowire Heterostructures [J].
Ben-Ishai, Moshit ;
Patolsky, Fernando .
ADVANCED MATERIALS, 2010, 22 (08) :902-+
[2]   Diameter-Independent Hole Mobility in Ge/Si Core/Shell Nanowire Field Effect Transistors [J].
Binh-Minh Nguyen ;
Taur, Yuan ;
Picraux, S. Tom ;
Dayeh, Shadi A. .
NANO LETTERS, 2014, 14 (02) :585-591
[3]   The growth and radial analysis of Si/Ge core-shell nanowires [J].
Chang, Hsu-Kai ;
Lee, Si-Chen .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[4]   Prismatic dislocation loops in strained core-shell nanowire heterostructures [J].
Colin, Jerome .
PHYSICAL REVIEW B, 2010, 82 (05)
[5]   SUBTHRESHOLD SLOPE OF THIN-FILM SOI MOSFETS [J].
COLINGE, JP .
IEEE ELECTRON DEVICE LETTERS, 1986, 7 (04) :244-246
[6]  
Day RW, 2015, NAT NANOTECHNOL, V10, P345, DOI [10.1038/nnano.2015.23, 10.1038/NNANO.2015]
[7]   Advanced core/multishell germanium/silicon nanowire heterostructures: Morphology and transport [J].
Dayeh, S. A. ;
Gin, A. V. ;
Picraux, S. T. .
APPLIED PHYSICS LETTERS, 2011, 98 (16)
[8]   Direct Measurement of Coherency Limits for Strain Relaxation in Heteroepitaxial Core/Shell Nanowires [J].
Dayeh, Shadi A. ;
Tang, Wei ;
Boioli, Francesca ;
Kavanagh, Karen L. ;
Zheng, He ;
Wang, Jian ;
Mack, Nathan H. ;
Swadener, Greg ;
Huang, Jian Yu ;
Miglio, Leo ;
Tu, King-Ning ;
Picraux, S. Tom .
NANO LETTERS, 2013, 13 (05) :1869-1876
[9]   Advanced core/multishell germanium/silicon nanowire heterostructures: The Au-diffusion bottleneck [J].
Dayeh, Shadi A. ;
Mack, Nathan H. ;
Huang, Jian Yu ;
Picraux, S. T. .
APPLIED PHYSICS LETTERS, 2011, 99 (02)
[10]  
Dillen DC, 2014, NAT NANOTECHNOL, V9, P116, DOI [10.1038/nnano.2013.301, 10.1038/NNANO.2013.301]