Fault Diagnosis for Rolling Bearing Based on Deep Residual Neural Network

被引:0
作者
Sun, Yi [1 ]
Gao, Hongli [1 ]
Hong, Xin [1 ]
Song, Hongliang [1 ]
Liu, Qi [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Sichuan, Peoples R China
来源
2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC) | 2018年
基金
中国国家自然科学基金;
关键词
Feature extraction; Deep residuals network; Raw data; Fault identification;
D O I
10.1109/SDPC.2018.00086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the machine tool becomes more and more complex, the shallow model represented by machine learning and SVM is difficult to characterize the complex mapping relationship between the measured signal and the health status of the equipment, and it faced with the problem of dimensionality disaster. In view of the complex feature extraction process and the uncertainty of the traditional intelligent recognition, a method of fault feature extraction and recognition based on deep residual neural network is proposed in this paper. This method uses the original time domain signal to train the deep residual neural network and complete the intelligent classification of the fault type without periodic request to the time domain signal. Accordingly, it has strong applicability to effectively extract and identify features from multiple conditions, multiple fault locations and various fault levels. Compared with traditional fault diagnosis models, the deep residual neural network model improves the fault recognition rate and shows strong generalization performance.
引用
收藏
页码:421 / 425
页数:5
相关论文
共 50 条
  • [41] Fault diagnosis of rolling bearing using CVA based detector
    Wang, Baoxiang
    Pan, Hongxia
    Yang, Wei
    JOURNAL OF VIBROENGINEERING, 2016, 18 (07) : 4285 - 4298
  • [42] Rolling Bearing Fault Diagnosis Method Based on MCMF and SAIMFE
    Meng, Dejun
    Miao, Changyun.
    Li, Xianguo
    Shi, Jia
    Liu, Yi
    Li, Jie
    SHOCK AND VIBRATION, 2022, 2022
  • [43] Cross-Conditions Fault Diagnosis of Rolling Bearing Based on Transitional Domain Adversarial Network
    Jiang, Yonghua
    He, Yian
    Shi, Zhuoqi
    Jiang, Hongkui
    Dong, Zhilin
    Sun, Jianfeng
    Tang, Chao
    Jiao, Weidong
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1978 - 1993
  • [44] A Method of Rolling Bearing Fault Diagnose Based on Double Sparse Dictionary and Deep Belief Network
    Guo, Junfeng
    Zheng, Pengfei
    IEEE ACCESS, 2020, 8 : 116239 - 116253
  • [45] Rolling bearing fault diagnosis based on efficient time channel attention optimized deep multi-scale convolutional neural networks
    Li, Ou
    Zhu, Jing
    Chen, Minghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [46] Multiscale Residual Antinoise Network via Interpretable Dynamic Recalibration Mechanism for Rolling Bearing Fault Diagnosis With Few Samples
    Liu, Bin
    Yan, Changfeng
    Liu, Yaofeng
    Wang, Zonggang
    Huang, Yuan
    Wu, Lixiao
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 31425 - 31439
  • [47] FaultNet: A Deep Convolutional Neural Network for Bearing Fault Classification
    Magar, Rishikesh
    Ghule, Lalit
    Li, Junhan
    Zhao, Yang
    Farimani, Amir Barati
    IEEE ACCESS, 2021, 9 : 25189 - 25199
  • [48] Multi-input parallel graph neural network for semi-supervised rolling bearing fault diagnosis
    Bao, Shouyang
    Feng, Jing
    Xu, Xiaobin
    Hou, Pingzhi
    Zhang, Zhenjie
    Meng, Jianfang
    Steyskal, Felix
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (05)
  • [49] A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity
    Tian, Yuling
    Liu, Xiangyu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (06) : 750 - 762
  • [50] A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity
    Yuling Tian
    Xiangyu Liu
    TsinghuaScienceandTechnology, 2019, 24 (06) : 750 - 762