Changeable Rate and Novel Quantization for CSI Feedback Based on Deep Learning

被引:19
|
作者
Liang, Xin [1 ]
Chang, Haoran [1 ]
Li, Haozhen [1 ]
Gu, Xinyu [1 ]
Zhang, Lin [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[2] Beijing Municipal Bur Econ & InformationTechnol, Beijing Big Data Ctr, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Massive MIMO; CSI feedback; deep learning; changeable-rate; quantization; MASSIVE MIMO; CHANNEL ESTIMATION; COMPRESSION; AUTOENCODER;
D O I
10.1109/TWC.2022.3182216
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning (DL)-based channel state information (CSI) feedback improves the capacity and energy efficiency of massive multiple-input multiple-output (MIMO) systems in frequency division duplexing mode. However, multiple neural networks with different lengths of feedback overhead are required by time-varying bandwidth resources. The storage space required at the user equipment (UE) and the base station (BS) for these models increases linearly with the number of models. In this paper, we propose a DL-based changeable-rate framework with novel quantization scheme to improve the efficiency and feasibility of CSI feedback systems. This framework can reutilize all the network layers to achieve overhead-changeable CSI feedback to optimize the storage efficiency at the UE and the BS sides. Designed quantizer in this framework can avoid the normalization and gradient problems faced by traditional quantization schemes. Specifically, we propose two DL-based changeable-rate CSI feedback networks CH- CsiNetPro and CH- DualNetSph by introducing a feedback overhead control unit. Then, a pluggable quantization block (PQB) is developed to further improve the encoding efficiency of CSI feedback in an end-to-end way. Compared with existing CSI feedback methods, the proposed framework saves the storage space by about 50% with changeable-rate scheme and improves the encoding efficiency with the quantization module.
引用
收藏
页码:10100 / 10114
页数:15
相关论文
共 50 条
  • [1] A Novel Quantization Method for Deep Learning-Based Massive MIMO CSI Feedback
    Chen, Tong
    Guo, Jiajia
    Jin, Shi
    Wen, Chao-Kai
    Li, Geoffrey Ye
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [2] Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 8017 - 8045
  • [3] A Novel Deep Learning based CSI Feedback Approach for Massive MIMO Systems
    Li, Lun
    Wu, Hao
    Xiao, Huahua
    Liu, Lei
    Lu, Zhaohua
    Yu, Guanghui
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 56 - 60
  • [4] Binarized Aggregated Network With Quantization: Flexible Deep Learning Deployment for CSI Feedback in Massive MIMO Systems
    Lu, Zhilin
    Zhang, Xudong
    He, Hongyi
    Wang, Jintao
    Song, Jian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) : 5514 - 5525
  • [5] Toward Better Low-Rate Deep Learning-Based CSI Feedback: A Test Channel-Based Approach
    Liang, Xin
    Jia, Zhuqing
    Gu, Xinyu
    Zhang, Lin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 8773 - 8786
  • [6] Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO Systems
    Shin, Junyong
    Kang, Yujin
    Jeon, Yo-Seb
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (09) : 2382 - 2386
  • [7] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [8] Deep Learning for CSI Feedback Based on Superimposed Coding
    Qing, Chaojin
    Cai, Bin
    Yang, Qingyao
    Wang, Jiafan
    Huang, Chuan
    IEEE ACCESS, 2019, 7 : 93723 - 93733
  • [9] Deep Learning-Based Bitstream Error Correction for CSI Feedback
    Chang, Haoran
    Liang, Xin
    Li, Haozhen
    Shen, Jinghan
    Gu, Xinyu
    Zhang, Lin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (12) : 2828 - 2832
  • [10] Deep Learning Based CSI Compression and Quantization With High Compression Ratios in FDD Massive MIMO Systems
    Zhang, Yangyang
    Zhang, Xichang
    Liu, Yi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (10) : 2101 - 2105