Bohr's power series theorem in several variables

被引:180
作者
Boas, HP [1 ]
Khavinson, D [1 ]
机构
[1] UNIV ARKANSAS,DEPT MATH SCI,FAYETTEVILLE,AR 72701
关键词
D O I
10.1090/S0002-9939-97-04270-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalizing a classical one-variable theorem of Bohr, we show that if an n-variable power series has modulus less than 1 in the unit polydisc, then the sum of the moduli of the terms is less than 1 in the polydisc of radius 1/(3 root n).
引用
收藏
页码:2975 / 2979
页数:5
相关论文
共 11 条
  • [1] [Anonymous], 1969, FUNCTION THEORY POLY
  • [2] [Anonymous], 1991, B SOC ROY SCI LIEGE
  • [3] [Anonymous], 1992, FUNCTION THEORY SEVE
  • [4] Bohnenblust HF., 1931, Ann. of Math., V32, P600, DOI DOI 10.2307/1968255
  • [5] Bohr H, 1914, P LOND MATH SOC, V13, P1
  • [6] ABSOLUTE BASES, TENSOR-PRODUCTS AND A THEOREM OF BOHR
    DINEEN, S
    TIMONEY, RM
    [J]. STUDIA MATHEMATICA, 1989, 94 (03) : 227 - 234
  • [7] Kahane J.-P., 1985, Cambridge Studies in Advanced Mathematics, VSecond
  • [8] MANTERO AM, 1980, STUD MATH, V68, P1
  • [9] On a sentence by Herr Bohr.
    Sidon, S
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1927, 26 : 731 - 732
  • [10] Tomic M., 1962, Math. Scand., V11, P103