Implementation of Kohn's theorem for the ellipsoidal quantum dot in the presence of external magnetic field

被引:24
作者
Hayrapetyan, D. B. [1 ,2 ]
Kazaryan, E. M. [1 ]
Sarkisyan, H. A. [1 ,2 ,3 ]
机构
[1] Russian Armenian Slavon Univ, 123 Hovsep Emin Str, Yerevan 0051, Armenia
[2] Yerevan State Univ, Ctr Quantum Technol & New Mat, Yerevan 0025, Armenia
[3] Peter Great St Petersburg Polytech Univ, St Petersburg, Russia
关键词
Kohn's theorem; Ellipsoidal quantum dot; STATES;
D O I
10.1016/j.physe.2015.09.047
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An electron gas in a strongly oblated ellipsoidal quantum dot with impenetrable walls in the presence of external magnetic field is considered. Influence of the walls of the quantum dot is assumed to be so strong in the direction of the minor axis (the OZ axis) that the Coulomb interaction between electrons in this direction can be neglected and considered as two-dimensional. On the basis of geometric adiabaticity we show that in the case of a few-particle gas a powerful repulsive potential of the quantum dot walls has a parabolic form and localizes the gas in the geometric center of the structure. Due to this fact, conditions occur to implement the generalized Kohn theorem for this system. The parabolic confinement potential depends on the geometry of the ellipsoid, which allows, together with the magnetic field to control resonance frequencies of transitions by changing the geometric dimensions of the QD. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:353 / 357
页数:5
相关论文
共 50 条
[41]   Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields [J].
Dehyar, A. ;
Rezaei, G. ;
Zamani, A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 84 :175-181
[42]   Many-body perturbation theory for the superconducting quantum dot: Fundamental role of the magnetic field [J].
Janis, Vaclav ;
Yan, Jiawei .
PHYSICAL REVIEW B, 2021, 103 (23)
[43]   Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects [J].
Pala, M. G. ;
Baltazar, S. ;
Martins, F. ;
Hackens, B. ;
Sellier, H. ;
Ouisse, T. ;
Bayot, V. ;
Huant, S. .
NANOTECHNOLOGY, 2009, 20 (26)
[44]   Impurity position effects on the linear and nonlinear optical properties of the cubic quantum dot under an external electric field [J].
Kirak, Muharrem ;
Yilmaz, Sait .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (32)
[45]   Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field [J].
de Souza, G. V. B. ;
Bruno-Alfonso, A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 66 :128-132
[46]   Non-linear optical response of an impurity in a cylindrical quantum dot under the action of a magnetic field [J].
Portacio, Alfonso A. ;
Rodriguez, Boris A. ;
Villamil, Pablo .
PHYSICA B-CONDENSED MATTER, 2017, 511 :68-73
[47]   Excitation kinetics of quantum dot induced by damped propagation of dopant: Role of confinement potential and magnetic field [J].
Pal, Suvajit ;
Ghosh, Manas .
CHEMICAL PHYSICS, 2013, 423 :15-19
[48]   The effect of magnetic field and donor impurity on electron spectrum in spherical core-shell quantum dot [J].
Holovatsky, V. A. ;
Voitsekhivska, O. M. ;
Yakhnevych, M. Ya .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 116 :9-16
[49]   Magnetic field effects on the properties of GaAs quantum dot qubit due to electron-phonon interactions [J].
Chen, Shi-Hua .
PHYSICA B-CONDENSED MATTER, 2014, 452 :55-57
[50]   Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field [J].
Al, E. B. ;
Kasapoglu, E. ;
Sakiroglu, S. ;
Sari, H. ;
Sokmen, I ;
Duque, C. A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 119