Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor

被引:50
作者
Bello, A. [1 ]
Fashedemi, O. O. [2 ]
Fabiane, M. [1 ]
Lekitima, J. N. [2 ]
Ozoemena, K. I. [2 ,3 ]
Manyala, N. [1 ]
机构
[1] Univ Pretoria, Dept Phys, Inst Appl Mat, SARCHI Chair Carbon Technol & Mat, ZA-0028 Pretoria, South Africa
[2] Univ Pretoria, Dept Chem, ZA-0002 Pretoria, South Africa
[3] CSIR, ZA-0001 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
Nickel foam-graphene (NF-G); CVD; Microwave irradiation; Nanostructure MnO2; Electrochemical capacitor; HYBRID SUPERCAPACITOR; NANOSTRUCTURED MNO2; RAMAN-SPECTROSCOPY; CARBON MATERIALS; MANGANESE OXIDE; PERFORMANCE; COMPOSITES; ELECTRODES; ENERGY;
D O I
10.1016/j.electacta.2013.09.134
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A green chemistry approach (hydrothermal microwave irradiation) has been used to deposit manganese oxide on nickel foam-graphene. The 3D graphene was synthesized using nickel foam template by chemical vapor deposition (CVD) technique. Raman spectroscopy, X-ray diffraction (XRD), scanning electron and transmission electron microscopies (SEM and TEM) have been used to characterize structure and surface morphology of the composite, respectively. The Raman spectroscopy measurements on the samples reveal that 3D graphene consists of mostly few layers with low defect density. The composite was tested in a three electrode configuration for electrochemical capacitor, and exhibited a specific capacitance of 305 F g(-1) at a current density of 1 A g(-1) and showed excellent cycling stability. The obtained results demonstrate that microwave irradiation technique could be a promising approach to synthesis graphene based functional materials for electrochemical applications. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 45 条
  • [11] Carbon materials for the electrochemical storage of energy in capacitors
    Frackowiak, E
    Béguin, F
    [J]. CARBON, 2001, 39 (06) : 937 - 950
  • [12] Carbon materials for supercapacitor application
    Frackowiak, Elzbieta
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) : 1774 - 1785
  • [13] Poly(cyano-substituted diheteroareneethylene) as active electrode material for electrochemical supercapacitors
    Fusalba, F
    Ho, HA
    Breau, L
    Bélanger, D
    [J]. CHEMISTRY OF MATERIALS, 2000, 12 (09) : 2581 - 2589
  • [14] High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2
    Gao, Hongcai
    Xiao, Fei
    Ching, Chi Bun
    Duan, Hongwei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) : 2801 - 2810
  • [15] A comparison study on Raman scattering properties of α- and β-MnO2
    Gao, Tao
    Fjellvag, Helmer
    Norby, Poul
    [J]. ANALYTICA CHIMICA ACTA, 2009, 648 (02) : 235 - 239
  • [16] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [17] Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications
    Guo, Shaojun
    Dong, Shaojun
    [J]. CHEMICAL SOCIETY REVIEWS, 2011, 40 (05) : 2644 - 2672
  • [18] Energy storage in electrochemical capacitors: designing functional materials to improve performance
    Hall, Peter J.
    Mirzaeian, Mojtaba
    Fletcher, S. Isobel
    Sillars, Fiona B.
    Rennie, Anthony J. R.
    Shitta-Bey, Gbolahan O.
    Wilson, Grant
    Cruden, Andrew
    Carter, Rebecca
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) : 1238 - 1251
  • [19] Nanoscale microelectrochemical cells on carbon nanotubes
    Jin, Xianbo
    Zhou, Wuzong
    Zhang, Shengwen
    Chen, George Z.
    [J]. SMALL, 2007, 3 (09) : 1513 - 1517
  • [20] Microwave dielectric heating in synthetic organic chemistry
    Kappe, C. Oliver
    [J]. CHEMICAL SOCIETY REVIEWS, 2008, 37 (06) : 1127 - 1139