Global regular solutions for the nonhomogeneous carrier equation

被引:15
作者
Larkin, NA [1 ]
机构
[1] Inst Theoret & Appl Mech, Novosibirsk 630090, Russia
[2] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, Parana, Brazil
关键词
carrier equation; global smooth solutions; existence;
D O I
10.1080/10241230211382
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study in a n + 1-dimensional cylinder Q global solvability of the mixed problem for the nonhomogeneous Carrier equation u(n) - M(x, t, parallel tou(t)parallel to(2))Deltau + g(x, t, u(t)) = f(x, t) without restrictions on a size of initial data and f (x, t). For any natural n, we prove existence, uniqueness and the exponential decay of the energy for global generalized solutions. When n = 2, we prove C-infinity (Q)-regularity of solutions.
引用
收藏
页码:15 / 31
页数:17
相关论文
共 8 条
[1]   ON THE NON-LINEAR VIBRATION PROBLEM OF THE ELASTIC STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1945, 3 (02) :157-165
[2]  
Cousin A.T., 1999, DIFFERENTIAL INTEGRA, V12, P453
[3]  
DAVEIGA HB, 1995, REND SEM MAT UNIV P, V94, P55
[4]  
Frota C.L., 1994, PORT MATH, V51, P455
[5]   GLOBAL SOLVABILITY OF BOUNDARY-VALUE-PROBLEMS FOR A CLASS OF QUASILINEAR HYPERBOLIC-EQUATIONS [J].
LARKIN, NA .
SIBERIAN MATHEMATICAL JOURNAL, 1981, 22 (01) :82-88
[6]  
Lions J.-L., 1968, Quelques methodes de re solution des problemes aux limites non lineaires
[7]  
LIONS JL, 1968, PROBLEMES LIMITES HO, V1
[8]   ENERGY DECAY FOR THE QUASI-LINEAR WAVE-EQUATION WITH VISCOSITY [J].
NAKAO, M .
MATHEMATISCHE ZEITSCHRIFT, 1995, 219 (02) :289-299