Spectral-Spatial Hyperspectral Image Classification Based on Homogeneous Minimum Spanning Forest

被引:1
|
作者
Poorahangaryan, F. [1 ]
Ghassemian, H. [2 ]
机构
[1] Ayandegan Inst Higher Educ, Dept Elect Engn, Tonekabon, Iran
[2] Tarbiat Modares Univ, Fac Elect & Comp Engn, Image Proc & Informat Anal Lab, Tehran, Iran
关键词
SEGMENTATION;
D O I
10.1155/2020/8884965
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The combination of spectral and spatial information is known as a suitable way to improve the accuracy of hyperspectral image classification. In this paper, we propose a spectral-spatial hyperspectral image classification approach composed of the following stages. Initially, the support vector machine (SVM) is applied to obtain the initial classification map. Then, we present a new index called the homogeneity order and, using that with K-nearest neighbors, we select some pixels in feature space. The extracted pixels are considered as markers for Minimum Spanning Forest (MSF) construction. The class assignment to the markers is done using the initial classification map results. In the final stage, MSF is applied to these markers, and a spectral-spatial classification map is obtained. Experiments performed on several real hyperspectral images demonstrate that the classification accuracies obtained by the proposed scheme are improved when compared to MSF-based spectral-spatial classification approaches.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Spectral-Spatial Attention Networks for Hyperspectral Image Classification
    Mei, Xiaoguang
    Pan, Erting
    Ma, Yong
    Dai, Xiaobing
    Huang, Jun
    Fan, Fan
    Du, Qinglei
    Zheng, Hong
    Ma, Jiayi
    REMOTE SENSING, 2019, 11 (08)
  • [22] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    NEUROCOMPUTING, 2019, 328 : 39 - 47
  • [23] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [24] Hyperspectral Image Classification Using Spectral-Spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    COMPUTER VISION, PT I, 2017, 771 : 577 - 588
  • [25] A Complementary Spectral-Spatial Method for Hyperspectral Image Classification
    Shi, Lulu
    Li, Chunchao
    Li, Teng
    Peng, Yuanxi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [26] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song, Liangliang
    Feng, Zhixi
    Yang, Shuyuan
    Zhang, Xinyu
    Jiao, Licheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8589 - 8601
  • [27] Sparse Representations for the Spectral-Spatial Classification of Hyperspectral Image
    Hamdi, Mohamed Ali
    Ben Salem, Rafika
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 923 - 929
  • [28] Spectral-Spatial Unified Networks for Hyperspectral Image Classification
    Xu, Yonghao
    Zhang, Liangpei
    Du, Bo
    Zhang, Fan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 5893 - 5909
  • [29] Spectral-spatial Hyperspectral Image Classification based on Extended Training Set
    Li, Changli
    Wang, Qingyun
    THIRD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2018, 10828
  • [30] Fusion of Spectral-Spatial Classifiers for Hyperspectral Image Classification
    Zhong, Shengwei
    Chen, Shuhan
    Chang, Chein-, I
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5008 - 5027