Chaos for backward shift operators

被引:60
作者
Martínez-Giménez, F [1 ]
Peris, A [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, E-46022 Valencia, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2002年 / 12卷 / 08期
关键词
chaotic operators; hypercyclic operators; weighted backward shifts; Kothe echelon spaces;
D O I
10.1142/S0218127402005418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Backward shift operators provide a general class of linear dynamical systems on infinite dimensional spaces. Despite linearity, chaos is a phenomenon that occurs within this context. In this paper we give characterizations for chaos in the sense of Auslander and Yorke [1980] and in the sense of Devaney [1989] of weighted backward shift operators and perturbations of the identity by backward shifts on a wide class of sequence spaces. We cover and unify a rich variety of known examples in different branches of applied mathematics. Moreover, we give new examples of chaotic backward shift operators. In particular we prove that the differential operator I + D is Auslander-Yorke chaotic on the most usual spaces of analytic functions.
引用
收藏
页码:1703 / 1715
页数:13
相关论文
共 42 条
[1]  
[Anonymous], ERGODIC THEORY DYNAM
[2]   Existence of hypercyclic operators on topological vector spaces [J].
Ansari, SI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (02) :384-390
[3]  
Auslander J., 1980, Tohoku Math. J., V32, P177, DOI DOI 10.2748/TMJ/1178229634
[4]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[5]   On hypercyclic operators on Banach spaces [J].
Bernal-González, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1003-1010
[6]   Hereditarily hypercyclic operators [J].
Bès, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :94-112
[7]  
BES J, 1998, THESIS KENT STATE U
[8]  
Birkhoff GD, 1929, CR HEBD ACAD SCI, V189, P473
[9]   Hypercyclic and chaotic convolution operators [J].
Bonet, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :253-262
[10]   A Banach space which admits no chaotic operator [J].
Bonet, J ;
Martínez-Giménez, F ;
Peris, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :196-198