On the hyperstability of the generalized class of Drygas functional equations on semigroups

被引:2
作者
Almahalebi, Muaadh [1 ]
EL Ghali, Rachid [1 ]
Kabbaj, Samir [1 ]
机构
[1] Univ Ibn Tofail, Fac Sci, Dept Math, Kenitra, Morocco
关键词
Stability; Hyperstability; Functional equations; Semigroup; STABILITY;
D O I
10.1007/s00010-020-00775-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to offer some hyperstability results for the following functional equation Sigma(lambda is an element of Lambda)f(x lambda center dot y) = Lf(x)+ Sigma(lambda is an element of Lambda)f(lambda.y) (x,y is an element of S), where S is a semigroup, Lambda is a finite subgroup of the group of endomorphisms of S, L is the cardinality of Lambda (i.e. L = card(Lambda)) and f : S -> G such that (G, +) is a L-cancellative abelian group with a metric d. Moreover, we discuss some remarks concerning particular cases of the considered equation and the inhomogeneous equation Sigma(lambda is an element of Lambda)f(x lambda center dot y) = Lf(x)+ Sigma(lambda is an element of Lambda)f(lambda center dot y) + F(x, y) (x,y is an element of S), where F : S x S -> G.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 32 条
[1]  
Ait Sibaha M., 2007, J INEQ PURE APPL MAT, V8, P1
[2]  
Almahalebi M, 2016, AEQUATIONES MATH, V90, P849, DOI 10.1007/s00010-016-0422-2
[3]  
[Anonymous], 2009, AUST J MATH ANAL APP
[4]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI DOI 10.2969/JMSJ/00210064
[5]  
Bouikhalene B., 2007, TAMSUI OXFORD J MATH, V23, P449
[6]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[8]   Remarks on stability of some inhomogeneous functional equations [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2015, 89 (01) :83-96
[9]   Hyperstability and Superstability [J].
Brzdek, Janusz ;
Cieplinski, Krzysztof .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[10]   A fixed point approach to stability of functional equations [J].
Brzdek, Janusz ;
Chudziak, Jacek ;
Pales, Zsolt .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6728-6732