Proper vertex-pancyclicity of edge-colored complete graphs without monochromatic triangles

被引:10
作者
Chen, Xiaozheng [1 ]
Huang, Fei [1 ]
Yuan, Jinjiang [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国博士后科学基金;
关键词
Edge-colored graph; Proper cycle; Color degree; Properly vertex-pancyclicity; RAINBOW TRIANGLES; CYCLES; PATHS;
D O I
10.1016/j.dam.2019.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an edge-colored graph (G, c), let d(c)(v) be the number of colors on the edges incident to vertex v and let delta(c)(G) be the minimum value of d(c)(v) over all vertices v is an element of V(G). A cycle of (G, c) is called proper if any two adjacent edges of the cycle have distinct colors. An edge-colored graph (G, c) on n >= 3 vertices is called properly vertex-pancyclic if each vertex of (G, c) is contained in a proper cycle of length I for every I with 3 <= l <= n. Fujita and Magnant conjectured that every edge-colored complete graph on n >= 3 vertices with delta(c)(G) >= n+1/2 is properly vertex-pancyclic. We show that this conjecture is true if the edge-colored complete graph has no monochromatic triangles. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 24 条
[1]  
Alon N, 1997, RANDOM STRUCT ALGOR, V11, P179, DOI 10.1002/(SICI)1098-2418(199709)11:2<179::AID-RSA5>3.0.CO
[2]  
2-P
[3]  
[Anonymous], 1987, CONTRIBUTIONS GEN AL
[4]  
[Anonymous], 1994, MATH INF SCI HUM
[5]  
Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
[6]   Alternating cycles and paths in edge-coloured multigraphs: A survey [J].
BangJensen, J ;
Gutin, G .
DISCRETE MATHEMATICS, 1997, 165 :39-60
[7]  
Chartrand G., 2015, Graphs & Digraphs, V6, P465, DOI [10.1201/b19731, DOI 10.1201/B19731]
[8]   GRAPHS WITH HAMILTONIAN CYCLES HAVING ADJACENT LINES DIFFERENT COLORS [J].
CHEN, CC ;
DAYKIN, DE .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 21 (02) :135-139
[9]   GRAPHS WITH CYCLES HAVING ADJACENT LINES DIFFERENT COLORS [J].
DAYKIN, DE .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (02) :149-152
[10]  
Dirac G. A., 1952, Proc. London Math. Soc, V3, P69, DOI DOI 10.1112/PLMS/S3-2.1.69