Robust, high-productivity phototrophic carbon capture at high pH and alkalinity using natural microbial communities

被引:39
作者
Sharp, Christine E. [1 ]
Urschel, Sydney [1 ]
Dong, Xiaoli [1 ]
Brady, Allyson L. [2 ]
Slater, Greg F. [2 ]
Strous, Marc [1 ]
机构
[1] Univ Calgary, Dept Geosci, 2500 Univ Dr NW,EEEL 509, Calgary, AB T2N 1N4, Canada
[2] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Algae biofuel; Phormidium kuetzingianum; Mixed-community; Microbial ecology; Biofilm; CARIBOO PLATEAU; NEXT-GENERATION; BIOFILM GROWTH; MICROALGAE; ALGAE; CULTIVATION; CONSORTIA; COST; PHOTOBIOREACTORS; BIOSIGNATURES;
D O I
10.1186/s13068-017-0769-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Bioenergy with carbon capture and storage (BECCS) has come to be seen as one of the most viable technologies to provide the negative carbon dioxide emissions needed to constrain global temperatures. In practice, algal biotechnology is the only form of BECCS that could be realized at scale without compromising food production. Current axenic algae cultivation systems lack robustness, are expensive and generally have marginal energy returns. Results: Here it is shown that microbial communities sampled from alkaline soda lakes, grown as biofilms at high pH (up to 10) and high alkalinity (up to 0.5 kmol m(-3)-NaHCO3 and NaCO3) display excellent (> 1.0 kg m(-3) day(-1)) and robust (> 80 days) biomass productivity, at low projected overall costs. The most productive biofilms contained > 100 different species and were dominated by a cyanobacterium closely related to Phormidium kuetzingianum (> 60%). Conclusion: Frequent harvesting and red light were the key factors that governed the assembly of a stable and productive microbial community.
引用
收藏
页数:13
相关论文
共 57 条
[1]   Production cost of a real microalgae production plant and strategies to reduce it [J].
Acien, F. G. ;
Fernandez, J. M. ;
Magan, J. J. ;
Molina, E. .
BIOTECHNOLOGY ADVANCES, 2012, 30 (06) :1344-1353
[2]   Harvesting techniques applied to microalgae: A review [J].
Barros, Ana I. ;
Goncalves, Ana L. ;
Simoes, Manuel ;
Pires, Jose C. M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 41 :1489-1500
[3]  
Benemann J.R., 2008, ALGAE-SEOUL, V2, P216, DOI 10.1039/c0-e00593b
[4]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[5]   Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing [J].
Boelee, N. C. ;
Janssen, M. ;
Temmink, H. ;
Shrestha, R. ;
Buisman, C. J. N. ;
Wijffels, R. H. .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 172 (01) :405-422
[6]   Isotopic biosignatures in carbonate-rich, cyanobacteria-dominated microbial mats of the Cariboo Plateau, BC [J].
Brady, A. L. ;
Druschel, G. ;
Leoni, L. ;
Lim, D. S. S. ;
Slater, G. F. .
GEOBIOLOGY, 2013, 11 (05) :437-456
[7]   Autotrophic and heterotrophic associated biosignatures in modern freshwater microbialites over seasonal and spatial gradients [J].
Brady, Allyson L. ;
Laval, Bernard ;
Lim, Darlene S. S. ;
Slater, Greg F. .
ORGANIC GEOCHEMISTRY, 2014, 67 :8-18
[8]   Engineering microbial consortia: a new frontier in synthetic biology [J].
Brenner, Katie ;
You, Lingchong ;
Arnold, Frances H. .
TRENDS IN BIOTECHNOLOGY, 2008, 26 (09) :483-489
[9]   Biodiesel production from various feedstocks and their effects on the fuel properties [J].
Canakci, M. ;
Sanli, H. .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2008, 35 (05) :431-441
[10]   Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology [J].
Canon-Rubio, Karen A. ;
Sharp, Christine E. ;
Bergerson, Joule ;
Strous, Marc ;
De la Hoz Siegler, Hector .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (04) :1611-1622