Histograms of Optical Flow Orientation and Magnitude and Entropy to Detect Anomalous Events in Videos

被引:123
作者
Hugo Mora Colque, Rensso Victor [1 ]
Caetano, Carlos [1 ]
Lustosa de Andrade, Matheus Toledo [1 ]
Schwartz, William Robson [1 ]
机构
[1] Univ Fed Minas Gerais, Smart Surveillance Interest Grp, Dept Comp Sci, BR-31270901 Belo Horizonte, MG, Brazil
关键词
Abnormal events; magnitude-orientation information surveillance; temporal descriptor; MOTION; RECOGNITION; SCENES;
D O I
10.1109/TCSVT.2016.2637778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an approach for detecting anomalous events in videos with crowds. The main goal is to recognize patterns that might lead to an anomalous event. An anomalous event might be characterized by the deviation from the normal or usual, but not necessarily in an undesirable manner, e. g., an anomalous event might just be different from normal but not a suspicious event from the surveillance point of view. One of the main challenges of detecting such events is the difficulty to create models due to their unpredictability and their dependency on the context of the scene. Based on these challenges, we present a model that uses general concepts, such as orientation, velocity, and entropy to capture anomalies. Using such a type of information, we can define models for different cases and environments. Assuming images captured from a single static camera, we propose a novel spatiotemporal feature descriptor, called histograms of optical flow orientation and magnitude and entropy, based on optical flow information. To determine the normality or abnormality of an event, the proposed model is composed of training and test steps. In the training, we learn the normal patterns. Then, during test, events are described and if they differ significantly from the normal patterns learned, they are considered as anomalous. The experimental results demonstrate that our model can handle different situations and is able to recognize anomalous events with success. We use the well-known UCSD and Subway data sets and introduce a new data set, namely, Badminton.
引用
收藏
页码:673 / 682
页数:10
相关论文
共 35 条
  • [1] Robust real-time unusual event detection using multiple fixed-location monitors
    Adam, Amit
    Rivlin, Ehud
    Shimshoni, Ilan
    Reinitz, David
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (03) : 555 - 560
  • [2] Human Activity Analysis: A Review
    Aggarwal, J. K.
    Ryoo, M. S.
    [J]. ACM COMPUTING SURVEYS, 2011, 43 (03)
  • [3] Ali S, 2007, PROC CVPR IEEE, P65
  • [4] Andrade EL, 2006, INT C PATT RECOG, P175
  • [5] [Anonymous], P BMVC
  • [6] [Anonymous], THESIS
  • [7] [Anonymous], 2011, P 19 ACM INT C MULTI, DOI DOI 10.1145/2072298.2072042
  • [8] [Anonymous], SEMIOTICS VISUAL COM
  • [9] [Anonymous], P HUM CENTR TECHN WO
  • [10] [Anonymous], 2001, INTEL CORPORATION