Discovering sparse transcription factor codes for cell states and state transitions during development

被引:24
作者
Furchtgott, Leon A. [1 ,2 ]
Melton, Samuel [1 ,3 ]
Menon, Vilas [4 ,5 ]
Ramanathan, Sharad [1 ,3 ,4 ,6 ,7 ]
机构
[1] Harvard Univ, FAS Ctr Syst Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Biophys Program, Cambridge, MA 02138 USA
[3] Harvard Univ, Harvard Stem Cell Inst, Cambridge, MA 02138 USA
[4] Allen Inst Brain Sci, Seattle, WA USA
[5] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA USA
[6] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[7] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
来源
ELIFE | 2017年 / 6卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
NEURAL STEM-CELLS; GENE-EXPRESSION; DOPAMINERGIC-NEURONS; RNA-SEQ; HEMATOPOIETIC STEM; PROGENITOR CELLS; EMBRYONIC EXPRESSION; LINEAGE COMMITMENT; MYELOID PROGENITOR; PROJECTION NEURONS;
D O I
10.7554/eLife.20488
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computational analysis of gene expression to determine both the sequence of lineage choices made by multipotent cells and to identify the genes influencing these decisions is challenging. Here we discover a pattern in the expression levels of a sparse subset of genes among cell types in B-and T-cell developmental lineages that correlates with developmental topologies. We develop a statistical framework using this pattern to simultaneously infer lineage transitions and the genes that determine these relationships. We use this technique to reconstruct the early hematopoietic and intestinal developmental trees. We extend this framework to analyze single-cell RNA-seq data from early human cortical development, inferring a neocortical-hindbrain split in early progenitor cells and the key genes that could control this lineage decision. Our work allows us to simultaneously infer both the identity and lineage of cell types as well as a small set of key genes whose expression patterns reflect these relationships.
引用
收藏
页数:33
相关论文
共 163 条
[1]   Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells [J].
Abraham, Ariel B. ;
Bronstein, Robert ;
Chen, Emily I. ;
Koller, Antonius ;
Ronfani, Lorenza ;
Maletic-Savatic, Mirjana ;
Tsirka, Stella E. .
PROTEOME SCIENCE, 2013, 11
[2]   Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential:: A revised road map for adult blood lineage commitment [J].
Adolfsson, J ;
Månsson, R ;
Buza-Vidas, N ;
Hultquist, A ;
Liuba, K ;
Jensen, CT ;
Bryder, D ;
Yang, LP ;
Borge, OJ ;
Thoren, LAM ;
Anderson, K ;
Sitnicka, E ;
Sasaki, Y ;
Sigvardsson, M ;
Jacobsen, SEW .
CELL, 2005, 121 (02) :295-306
[3]   Statistical Mechanics of Optimal Convex Inference in High Dimensions [J].
Advani, Madhu ;
Ganguli, Surya .
PHYSICAL REVIEW X, 2016, 6 (03)
[4]   Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development [J].
Agoston, Zsuzsa ;
Li, Naixin ;
Haslinger, Anja ;
Wizenmann, Andrea ;
Schulte, Dorothea .
BMC DEVELOPMENTAL BIOLOGY, 2012, 12
[5]   A clonogenic common myeloid progenitor that gives rise to all myeloid lineages [J].
Akashi, K ;
Traver, D ;
Miyamoto, T ;
Weissman, IL .
NATURE, 2000, 404 (6774) :193-197
[6]   LOCAL MOMENTS AND LOCALIZED STATES [J].
ANDERSON, PW .
REVIEWS OF MODERN PHYSICS, 1978, 50 (02) :191-201
[7]   Transcriptional control of midbrain dopaminergic neuron development [J].
Ang, Siew-Lan .
DEVELOPMENT, 2006, 133 (18) :3499-3506
[8]  
[Anonymous], 2009, J Mach Learn Res
[9]   Six3 controls the neural progenitor status in the murine CNS [J].
Appolloni, Irene ;
Calzolari, Filippo ;
Corte, Giorgio ;
Perris, Roberto ;
Malatesta, Paolo .
CEREBRAL CORTEX, 2008, 18 (03) :553-562
[10]   A Modular Gain-of-Function Approach to Generate Cortical Interneuron Subtypes from ES Cells [J].
Au, Edmund ;
Ahmed, Tanzeel ;
Karayannis, Theofanis ;
Biswas, Shiona ;
Gan, Lin ;
Fishell, Gord .
NEURON, 2013, 80 (05) :1145-1158