Development of a modular room-temperature hydride storage system for vehicular applications

被引:40
作者
Capurso, Giovanni [1 ,2 ]
Schiavo, Benedetto [1 ,3 ,4 ]
Jepsen, Julian [1 ]
Lozano, Gustavo [1 ,6 ]
Metz, Oliver [1 ]
Saccone, Adriana [5 ]
De Negri, Serena [5 ]
von Colbe, Jose M. Bellosta [1 ]
Klassen, Thomas [1 ]
Dornheim, Martin [1 ]
机构
[1] Zentrum Mat & Kustenforsch GmbH, Helmholtz Zentrum Geesthacht, Inst Mat Technol, Max Planck Str 1, D-21502 Geesthacht, Germany
[2] Univ Padua, Dipartimento Ingn Ind, Via F Marzolo 9, I-35131 Padua, Italy
[3] Univ Palermo, Dipartimento Ingn Chim Gestionale Informat Meccan, Viale Sci Ed6, I-90128 Palermo, Italy
[4] Ist Tecnol Avanzate, SS 113 174, I-91100 Trapani, Italy
[5] Univ Genoa, Dipartimento Chim & Chim Ind, Via Dodecaneso 31, I-16146 Genoa, Italy
[6] BASF SE, Carl Bosch Str 38, D-67056 Ludwigshafen, Germany
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2016年 / 122卷 / 03期
关键词
HYDROGEN-STORAGE; SODIUM ALANATE; HIGH-PRESSURE; DESIGN; TANK; MANAGEMENT;
D O I
10.1007/s00339-016-9771-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The subject of this paper concerns the development of a vehicular hydrogen tank system, using a commercial interstitial metal hydride as storage material. The design of the tank was intended to feed a fuel cell in a light prototype vehicle, and the chosen hydride material, Hydralloy C5 by GfE, was expected to be able to absorb and desorb hydrogen in a range of pressure suitable for this purpose. A systematic analysis of the material in laboratory scale allows an extrapolation of the thermodynamic and reaction kinetics data. The following development of the modular tank was done according to the requirements of the prototype vehicle propulsion system and led to promising intermediate results. The modular approach granted flexibility in the design, allowing both to reach carefully the design goals and to learn the limiting factors in the sorption process. Proper heat management and suitable equipment remain key factors in order to achieve the best performances.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Review on hydrogen absorbing materials - structure, microstructure, and thermodynamic properties [J].
Bououdina, M ;
Grant, D ;
Walker, G .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (02) :177-182
[2]  
BURKE AF, 2005, UCDITSRR0501
[3]  
Capurso G., 2013, THESIS U STUDI PADOV
[4]   Large scale magnesium hydride tank coupled with an external heat source [J].
Delhomme, Baptiste ;
de Rango, Patricia ;
Marty, Philippe ;
Bacia, Maria ;
Zawilski, Bartosz ;
Raufast, Cecile ;
Miraglia, Salvatore ;
Fruchart, Daniel .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (11) :9103-9111
[5]   Hydrogen storage in metal-hydrogen systems and their derivatives [J].
Eberle, U ;
Arnold, G ;
von Helmolt, R .
JOURNAL OF POWER SOURCES, 2006, 154 (02) :456-460
[6]   MgH2 intermediate scale tank tests under various experimental conditions [J].
Garrier, S. ;
Chaise, A. ;
de Rango, P. ;
Marty, P. ;
Delhomme, B. ;
Fruchart, D. ;
Miraglia, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (16) :9719-9726
[7]  
Guardamagna Cristina, 2010, Advances in Science and Technology, V72, P176, DOI 10.4028/www.scientific.net/AST.72.176
[8]   METAL HYDRIDE HYDROGEN STORAGE FOR NEAR-AMBIENT TEMPERATURE AND ATMOSPHERIC-PRESSURE APPLICATIONS, A PDSC STUDY [J].
HAGSTROM, MT ;
LUND, PD ;
VANHANEN, JP .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1995, 20 (11) :897-909
[9]   AB2 metal hydrides for high-pressure and narrow temperature interval applications [J].
Hagstrom, MT ;
Vanhanen, JP ;
Lund, PD .
JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 269 (1-2) :288-293
[10]   Materials for Hydrogen Storage: Past, Present, and Future [J].
Jena, Puru .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (03) :206-211