Fluorescence light microscopy of pulmonary surfactant at the air-water interface of an air bubble of adjustable size

被引:17
|
作者
Knebel, D
Sieber, M
Reichelt, R
Galla, HJ
Amrein, M
机构
[1] Univ Munster, Inst Biochem, D-48149 Munster, Germany
[2] Univ Munster, Inst Med Phys & Biophys, D-48149 Munster, Germany
关键词
D O I
10.1016/S0006-3495(02)75190-4
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The structural dynamics of pulmonary surfactant was studied by epifluorescence light microscopy at the air-water interface of a bubble as a model close to nature for an alveolus. Small unilamellar vesicles of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, a small amount of a fluorescent dipalmitoylphosphatidylcholine-analog, and surfactant-associated protein C were injected into the buffer solution. They aggregated to large clusters in the presence of Ca2+ and adsorbed from these units to the interface. This gave rise to an interfacial film that eventually became fully condensed with dark, polygonal domains in a fluorescent matrix. When now the bubble size was increased or decreased, respectively, the film expanded or contracted. Upon expansion of the bubble, the dark areas became larger to the debit of the bright matrix and reversed upon contraction. We were able to observe single domains during the whole process. The film remained condensed, even when the interface was increased to twice its original size. From comparison with scanning force microscopy directly at the air-water interface, the fluorescent areas proved to be lipid bilayers associated with the (dark) monolayer. In the lung, such multilayer phase acts as a reservoir that guarantees a full molecular coverage of the alveolar interface during the breathing cycle and provides mechanical stability to the film.
引用
收藏
页码:547 / 555
页数:9
相关论文
共 50 条
  • [11] Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface
    Stenger, Patrick C.
    Palazoglu, Omer A.
    Zasadzinski, Joseph A.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2009, 1788 (05): : 1033 - 1043
  • [12] Effect of surfactant structure on the adsorption of carboxybetaines at the air-water interface
    Delgado, Cristina
    Merchan, M. Dolores
    Velazquez, M. Mercedes
    Anaya, Josefa
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2006, 280 (1-3) : 17 - 22
  • [13] Structure of Partially Fluorinated Surfactant Monolayers at the Air-Water Interface
    Jackson, A. J.
    Li, P. X.
    Dong, C. C.
    Thomas, R. K.
    Penfold, J.
    LANGMUIR, 2009, 25 (07) : 3957 - 3965
  • [14] Polymer-surfactant interactions at the air-water interface.
    Jean, B
    Lee, LT
    Cabane, B
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U525 - U526
  • [15] Complexation of cationic surfactant and anionic polymer at the air-water interface
    Asnacios, A
    Langevin, D
    Argillier, JF
    MACROMOLECULES, 1996, 29 (23) : 7412 - 7417
  • [16] Phase transitions in films of lung surfactant at the air-water interface
    Nag, K
    Perez-Gil, J
    Ruano, MLF
    Worthman, LAD
    Stewart, J
    Casals, C
    Keough, KMW
    BIOPHYSICAL JOURNAL, 1998, 74 (06) : 2983 - 2995
  • [17] THE EFFECT OF SOLUTES ON BUBBLE-SIZE IN AIR-WATER DISPERSIONS
    KEITEL, G
    ONKEN, U
    CHEMICAL ENGINEERING COMMUNICATIONS, 1982, 17 (1-6) : 85 - 98
  • [18] Effect of surfactant type on surfactant-protein interactions at the air-water interface
    Gunning, PA
    Mackie, AR
    Gunning, AP
    Woodward, NC
    Wilde, PJ
    Morris, VJ
    BIOMACROMOLECULES, 2004, 5 (03) : 984 - 991
  • [19] FTIR external reflectance studies of lipid monolayers at the air-water interface: Applications to pulmonary surfactant
    Wilkin, JM
    Dluhy, RA
    FOURIER TRANSFORM SPECTROSCOPY, 1998, (430): : 320 - 323
  • [20] Effect of viscosity and compression rate on the collapse phase transition of pulmonary surfactant at an air-water interface
    Rugonyi, S
    Smith, EC
    Hall, SB
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1797 - 1800