Excited state geometry optimizations by time-dependent density functional theory based on the fragment molecular orbital method

被引:27
作者
Chiba, Mahito [1 ]
Fedorov, Dmitri G. [1 ]
Nagata, Takeshi [1 ]
Kitaura, Kazuo [1 ,2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan
[2] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
关键词
POLARIZABLE CONTINUUM MODEL; EXCITATION-ENERGIES; CLUSTER-EXPANSION; WAVE-FUNCTION; APPROXIMATION; SCHEME;
D O I
10.1016/j.cplett.2009.04.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The energy gradient method is introduced to the fragment molecular orbital based time-dependent density functional theory (FMO-TDDFT), which we have recently developed to calculate excitation energies of large systems by dividing them into fragments. By using the energy gradient of FMO-TDDFT, excited state geometry optimizations of a polypeptide and solvated formaldehyde are carried out using the LC-BOP functional and the 6-31G* basis set. The accuracy of the optimized structures and the excitation energies in comparison to conventional TDDFT is discussed. (C) 2009 Published by Elsevier B. V.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条
[31]   Pyrrolidine-based dye-sensitized solar cells: A time-dependent density functional theory investigation of the excited state electronic properties [J].
Preat, Julien ;
Michaux, Catherine ;
Andre, Jean-Marie ;
Perpete, Eric A. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (09) :2072-2084
[32]   Phase-space explorations in time-dependent density functional theory [J].
Rajam, A. K. ;
Hessler, Paul ;
Gaun, Christian ;
Maitra, Neepa T. .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 914 (1-3) :30-37
[33]   Excited state geometry of photoactive yellow protein chromophore: A combined conductorlike polarizable continuum model and time-dependent density functional study [J].
Wang, Yali ;
Li, Hui .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (03)
[34]   Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Strategy for Excited States: Coupling to Time-Dependent Density Functional Theory and Equation-of-Motion Coupled Cluster [J].
Macetti, Giovanni ;
Genoni, Alessandro .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (12) :7490-7506
[35]   Orbital-Optimized Versus Time-Dependent Density Functional Calculations of Intramolecular Charge Transfer Excited States [J].
Selenius, Elli ;
Sigurdarson, Alec Elias ;
Schmerwitz, Yorick L. A. ;
Levi, Gianluca .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (09) :3809-3822
[36]   Modified Regional Self-Interaction Corrected Time-Dependent Density Functional Theory for Core Excited-State Calculations [J].
Nakata, Ayako ;
Tsuneda, Takao ;
Hirao, Kimihiko .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (16) :2583-2593
[37]   Time-dependent current density functional theory via time-dependent deformation functional theory: a constrained search formulation in the time domain [J].
Tokatly, I. V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (22) :4621-4630
[38]   Trajectory-Based Nonadiabatic Dynamics with Time-Dependent Density Functional Theory [J].
Curchod, Basile F. E. ;
Rothlisberger, Ursula ;
Tavernelli, Ivano .
CHEMPHYSCHEM, 2013, 14 (07) :1314-1340
[39]   Nonadiabatic molecular dynamics simulations based on time-dependent density functional tight-binding method [J].
Wu, Xiaoyan ;
Wen, Shizheng ;
Song, Huajing ;
Frauenheim, Thomas ;
Tretiak, Sergei ;
Yam, ChiYung ;
Zhang, Yu .
JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (08)
[40]   An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra [J].
Goings, Joshua J. ;
Li, Xiaosong .
JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (23)