Commensurating endomorphisms of acylindrically hyperbolic groups and applications

被引:23
作者
Antolin, Yago [1 ]
Minasyan, Ashot [2 ]
Sisto, Alessandro [3 ]
机构
[1] Vanderbilt Univ, Stevenson Ctr 1326, Nashville, TN 37240 USA
[2] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
[3] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
Acylindrically hyperbolic groups; hyperbolically embedded subgroups; commensurating endomorphisms; pointwise inner automorphisms; right angled Artin groups; outer automorphism groups; 3-manifold groups; CONJUGACY SEPARABILITY; NORMAL AUTOMORPHISMS; RESIDUAL PROPERTIES; BOUNDED COHOMOLOGY; SUBGROUPS;
D O I
10.4171/GGD/379
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the outer automorphism group Out(G) is residually finite when the group G is virtually compact special (in the sense of Haglund and Wise) or when G is isomorphic to the fundamental group of some compact 3-manifold. To prove these results we characterize commensurating endomorphisms of acylindrically hyperbolic groups. An endomorphism phi of a group G is said to be commensurating, if for every g is an element of G some non-zero power of phi(g) is conjugate to a non-zero power of g. Given an acylindrically hyperbolic group G, we show that any commensurating endomorphism of G is inner modulo a small perturbation. This generalizes a theorem of Minasyan and Osin, which provided a similar statement in the case when G is relatively hyperbolic. We then use this result to study pointwise inner and normal endomorphisms of acylindrically hyperbolic groups.
引用
收藏
页码:1149 / 1210
页数:62
相关论文
共 51 条
[1]  
Agol I, 2013, DOC MATH, V18, P1045
[2]  
Allenby RBJT, 2006, CONTEMP MATH, V421, P15
[3]   Outer automorphism groups of Seifert 3-manifold groups over non-orientable surfaces [J].
Allenby, R. B. J. T. ;
Kim, Goansu ;
Tang, C. Y. .
JOURNAL OF ALGEBRA, 2009, 322 (04) :957-968
[4]  
[Anonymous], 1983, IVANOV GOS PED I UCE
[5]   Tits alternatives for graph products [J].
Antolin, Yago ;
Minasyan, Ashot .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 :55-83
[6]   The SQ-universality and residual properties of relatively hyperbolic groups [J].
Arzhantseva, G. ;
Minasyan, A. ;
Osin, D. .
JOURNAL OF ALGEBRA, 2007, 315 (01) :165-177
[7]  
Aschenbrenner M., 2015, EMS SER LECT MATH
[8]   SUBGROUPS OF SEMIFREE GROUPS [J].
BAUDISCH, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1981, 38 (1-4) :19-28
[9]  
Baumslag G., 1963, J. Lond. Math. Soc, V38, P117
[10]   Bounded cohomology of subgroups of mapping class groups [J].
Bestvina, Mladen ;
Fujiwara, Koji .
GEOMETRY & TOPOLOGY, 2002, 6 :69-89