Commensurating endomorphisms of acylindrically hyperbolic groups and applications

被引:23
作者
Antolin, Yago [1 ]
Minasyan, Ashot [2 ]
Sisto, Alessandro [3 ]
机构
[1] Vanderbilt Univ, Stevenson Ctr 1326, Nashville, TN 37240 USA
[2] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
[3] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
Acylindrically hyperbolic groups; hyperbolically embedded subgroups; commensurating endomorphisms; pointwise inner automorphisms; right angled Artin groups; outer automorphism groups; 3-manifold groups; CONJUGACY SEPARABILITY; NORMAL AUTOMORPHISMS; RESIDUAL PROPERTIES; BOUNDED COHOMOLOGY; SUBGROUPS;
D O I
10.4171/GGD/379
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the outer automorphism group Out(G) is residually finite when the group G is virtually compact special (in the sense of Haglund and Wise) or when G is isomorphic to the fundamental group of some compact 3-manifold. To prove these results we characterize commensurating endomorphisms of acylindrically hyperbolic groups. An endomorphism phi of a group G is said to be commensurating, if for every g is an element of G some non-zero power of phi(g) is conjugate to a non-zero power of g. Given an acylindrically hyperbolic group G, we show that any commensurating endomorphism of G is inner modulo a small perturbation. This generalizes a theorem of Minasyan and Osin, which provided a similar statement in the case when G is relatively hyperbolic. We then use this result to study pointwise inner and normal endomorphisms of acylindrically hyperbolic groups.
引用
收藏
页码:1149 / 1210
页数:62
相关论文
共 51 条
  • [1] Agol I, 2013, DOC MATH, V18, P1045
  • [2] Allenby RBJT, 2006, CONTEMP MATH, V421, P15
  • [3] Outer automorphism groups of Seifert 3-manifold groups over non-orientable surfaces
    Allenby, R. B. J. T.
    Kim, Goansu
    Tang, C. Y.
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (04) : 957 - 968
  • [4] [Anonymous], 1983, IVANOV GOS PED I UCE
  • [5] Tits alternatives for graph products
    Antolin, Yago
    Minasyan, Ashot
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 : 55 - 83
  • [6] The SQ-universality and residual properties of relatively hyperbolic groups
    Arzhantseva, G.
    Minasyan, A.
    Osin, D.
    [J]. JOURNAL OF ALGEBRA, 2007, 315 (01) : 165 - 177
  • [7] Aschenbrenner M., 2015, EMS SER LECT MATH
  • [8] SUBGROUPS OF SEMIFREE GROUPS
    BAUDISCH, A
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1981, 38 (1-4): : 19 - 28
  • [9] Baumslag G., 1963, J. Lond. Math. Soc, V38, P117
  • [10] Bounded cohomology of subgroups of mapping class groups
    Bestvina, Mladen
    Fujiwara, Koji
    [J]. GEOMETRY & TOPOLOGY, 2002, 6 : 69 - 89