Genetically-directed Sparse Neuronal Labeling in BAC Transgenic Mice through Mononucleotide Repeat Frameshift

被引:22
作者
Lu, Xiao-Hong [1 ,2 ,3 ]
Yang, X. William [1 ,2 ]
机构
[1] Ctr Neurobehavioral Genet, Semel Inst Neurosci & Human Behavior, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Phychirty & Biobehavioral Sci, Los Angeles, CA 90095 USA
[3] Louisiana State Univ Hlth Sci Ctr, Dept Pharm, Toxicol & Neurosci, Shreveport, LA 71130 USA
关键词
MOUSE MODEL; POSTNATAL-DEVELOPMENT; SPINY NEURONS; GOLGI; MICROSATELLITES; VISUALIZATION; MOSAICISM; MUTATION; DISEASE; SYSTEM;
D O I
10.1038/srep43915
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mosaicism with Repeat Frameshift (MORF) allows a single Bacterial Artificial Chromosome (BAC) transgene to direct sparse labeling of genetically-defined neuronal populations in mice. The BAC transgene drives cell-type-specific transcription of an out-of-frame mononucleotide repeat that is placed between a translational start codon and a membrane-bound fluorescent protein lacking its start codon. The stochastic frameshift of the unstable repeat DNA in a subset of BAC-expressing neurons results in the in-frame translation of the reporter protein hence the sparse neuronal labeling. As a proof-of-concept, we generated D1-dopamine receptor (D1) BAC MORF mice that label about 1% striatal D1-expressing medium spiny neurons and allow visualization of their dendrites. These mice enable the study of D1-MSN dendrite development in wildtype mice, and its degeneration in a mouse model of Huntington's disease.
引用
收藏
页数:10
相关论文
共 31 条
[1]   POSTNATAL-DEVELOPMENT OF CAUDATE-NUCLEUS - GOLGI AND ELECTRON-MICROSCOPIC STUDY OF KITTENS [J].
ADINOLFI, AM .
BRAIN RESEARCH, 1977, 133 (02) :251-266
[2]   Generating somatic mosaicism with a Cre recombinase - microsatellite sequence transgene [J].
Akyol, Aytekin ;
Hinoi, Takao ;
Feng, Ying ;
Bommer, Guido T. ;
Glaser, Thomas M. ;
Fearon, Eric R. .
NATURE METHODS, 2008, 5 (03) :231-233
[3]   Probing the Biology of Alzheimer's Disease in Mice [J].
Ashe, Karen H. ;
Zahs, Kathleen R. .
NEURON, 2010, 66 (05) :631-645
[4]   Optimising Golgi-Cox staining for use with perfusion-fixed brain tissue validated in the zQ175 mouse model of Huntington's disease [J].
Bayram-Weston, Zubeyde ;
Olsen, Elliott ;
Harrison, David J. ;
Dunnett, Stephen B. ;
Brooks, Simon P. .
JOURNAL OF NEUROSCIENCE METHODS, 2016, 265 :81-88
[5]   Mutational Dynamics of Microsatellites [J].
Bhargava, Atul ;
Fuentes, F. F. .
MOLECULAR BIOTECHNOLOGY, 2010, 44 (03) :250-266
[6]   Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells [J].
Boyer, JC ;
Yamada, NA ;
Roques, CN ;
Hatch, SB ;
Riess, K ;
Farber, RA .
HUMAN MOLECULAR GENETICS, 2002, 11 (06) :707-713
[7]   Huntington's Disease: Can Mice Lead the Way to Treatment? [J].
Crook, Zachary R. ;
Housman, David .
NEURON, 2011, 69 (03) :423-435
[8]   Genetic Animal Models of Parkinson's Disease [J].
Dawson, Ted M. ;
Ko, Han Seok ;
Dawson, Valina L. .
NEURON, 2010, 66 (05) :646-661
[9]   Mutation in aging mice occurs in diverse cell types that proliferate postmutation [J].
Fischer, Jared M. ;
Stringer, James R. .
AGING CELL, 2008, 7 (05) :667-680
[10]  
Gong S., 2005, Current protocols in neuroscience