The Massless Higher-Loop Two-Point Function

被引:146
作者
Brown, Francis [1 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, UMR 7586, F-75005 Paris, France
关键词
MOTIVES;
D O I
10.1007/s00220-009-0740-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new method for computing massless Feynman integrals analytically in parametric form. An analysis of the method yields a criterion for a primitive Feynman graph G to evaluate to multiple zeta values. The criterion depends only on the topology of G, and can be checked algorithmically. As a corollary, we reprove the result, due to Bierenbaum and Weinzierl, that the massless 2-loop 2-point function is expressible in terms of multiple zeta values, and generalize this to the 3, 4, and 5-loop cases. We find that the coefficients in the Taylor expansion of planar graphs in this range evaluate to multiple zeta values, but the non-planar graphs with crossing number 1 may evaluate to multiple sums with 6(th) roots of unity. Our method fails for the five loop graphs with crossing number 2 obtained by breaking open the bipartite graph K (3,4) at one edge.
引用
收藏
页码:925 / 958
页数:34
相关论文
共 18 条
[1]  
Belkale P, 2003, DUKE MATH J, V116, P147
[2]   The massless two-loop two-point function [J].
Bierenbaum, I ;
Weinzierl, S .
EUROPEAN PHYSICAL JOURNAL C, 2003, 32 (01) :67-78
[3]   On motives associated to graph polynomials [J].
Bloch, Spencer ;
Esnault, Helene ;
Kreimer, Dirk .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (01) :181-225
[4]   EXPLOITING THE 1, 440-FOLD SYMMETRY OF THE MASTER 2-LOOP DIAGRAM [J].
BROADHURST, DJ .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1986, 32 (02) :249-253
[5]   KNOTS AND NUMBERS IN PHI(4) THEORY TO 7 LOOPS AND BEYOND [J].
BROADHURST, DJ ;
KREIMER, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1995, 6 (04) :519-524
[6]   Single-valued multiple polylogarithms in one variable [J].
Brown, FCS .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (07) :527-532
[7]  
BROWN FCS, 2006, MULTIPLE ZETA VALUES
[8]  
BROWN FCS, FEYNMAN INTEGRALS MU
[9]   Multiple zeta values and periods of moduli spaces (M)over-bar0,n. [J].
Brown, Francis C. S. .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (12) :949-954
[10]   ITERATED PATH INTEGRALS [J].
CHEN, KT .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (05) :831-879