From lattice long-range percolation to the continuum one

被引:12
|
作者
d'Iribarne, C [1 ]
Rasigni, M [1 ]
Rasigni, G [1 ]
机构
[1] Fac Sci & Tech St Jerome, Dept Phys Interact Photons Mat, F-13397 Marseille 20, France
关键词
percolation; graphs;
D O I
10.1016/S0375-9601(99)00585-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Graph theory through the minimal spanning tree is used to study the so-called long-range percolation (LRP). The percolation thresholds are determined for the ten nearest-neighbour connections related to the eleven mosaics permitted in the plane. It is shown that LRP makes it possible to retrieve the behaviour of continuum percolation. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:65 / 69
页数:5
相关论文
共 50 条
  • [1] Long-range percolation on the hierarchical lattice
    Koval, Vyacheslav
    Meester, Ronald
    Trapman, Pieter
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 21
  • [2] Graph distances of continuum long-range percolation
    Soenmez, Ercan
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2021, 35 (03) : 609 - 624
  • [3] LONG-RANGE PERCOLATION IN ONE DIMENSION
    SPOUGE, JL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (11): : 2349 - 2350
  • [4] LONG-RANGE PERCOLATION IN ONE DIMENSION
    SCHULMAN, LS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (17): : L639 - L641
  • [5] LONG-RANGE PERCOLATION IN ONE DIMENSION
    ZHANG, ZQ
    PU, FC
    LI, BZ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (03): : L85 - L90
  • [6] INHOMOGENEOUS LONG-RANGE PERCOLATION ON THE HIERARCHICAL LATTICE
    Shang, Yilun
    REPORTS ON MATHEMATICAL PHYSICS, 2015, 76 (01) : 53 - 61
  • [7] Percolation of words on the hypercubic lattice with one-dimensional long-range interactions
    Gomes, Pablo A.
    Lima, Otavio
    Silva, Roger W. C.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 153 : 79 - 90
  • [8] Long-range contact process and percolation on a random lattice
    Gomes, Pablo A.
    de Lima, Bernardo N. B.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 153 : 21 - 38
  • [9] On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions
    Kay Kirkpatrick
    Enno Lenzmann
    Gigliola Staffilani
    Communications in Mathematical Physics, 2013, 317 : 563 - 591
  • [10] On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions
    Kirkpatrick, Kay
    Lenzmann, Enno
    Staffilani, Gigliola
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (03) : 563 - 591