Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid

被引:39
作者
Cao, Bing-Yang [1 ]
Dong, Ruo-Yu [1 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
THERMAL-CONDUCTIVITY; POLYMER COMPOSITES; ELECTRIC-FIELD; MACROMOLECULES; ALIGNMENT; NANORODS; TRACKING; LIGHT;
D O I
10.1063/1.4861661
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J].
Behabtu, Natnael ;
Young, Colin C. ;
Tsentalovich, Dmitri E. ;
Kleinerman, Olga ;
Wang, Xuan ;
Ma, Anson W. K. ;
Bengio, E. Amram ;
ter Waarbeek, Ron F. ;
de Jong, Jorrit J. ;
Hoogerwerf, Ron E. ;
Fairchild, Steven B. ;
Ferguson, John B. ;
Maruyama, Benji ;
Kono, Junichiro ;
Talmon, Yeshayahu ;
Cohen, Yachin ;
Otto, Marcin J. ;
Pasquali, Matteo .
SCIENCE, 2013, 339 (6116) :182-186
[2]  
Cao BY, 2008, CHINESE PHYS LETT, V25, P1392, DOI 10.1088/0256-307X/25/4/062
[3]   Polymer Nanowire Arrays With High Thermal Conductivity and Superhydrophobicity Fabricated by a Nano-Molding Technique [J].
Cao, Bing-Yang ;
Kong, Jie ;
Xu, Yan ;
Yung, Kai-Leung ;
Cai, An .
HEAT TRANSFER ENGINEERING, 2013, 34 (2-3) :131-139
[4]   High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique [J].
Cao, Bing-Yang ;
Li, Yuan-Wei ;
Kong, Jie ;
Chen, Heng ;
Xu, Yan ;
Yung, Kai-Leung ;
Cai, An .
POLYMER, 2011, 52 (08) :1711-1715
[5]   A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics [J].
Cao, Bing-Yang ;
Li, Yuan-Wei .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (02)
[6]   Autonomously moving nanorods at a viscous interface [J].
Dhar, P ;
Fischer, TM ;
Wang, Y ;
Mallouk, TE ;
Paxton, WF ;
Sen, A .
NANO LETTERS, 2006, 6 (01) :66-72
[7]   Application of the uniform source-and-sink scheme to molecular dynamics calculation of the self-diffusion coefficient of fluids [J].
Dong, Ruo-Yu ;
Cao, Bing-Yang .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (03) :229-237
[8]   Anomalous intrinsic viscosity of octadecylamine-functionalised carbon nanotubes in suspension [J].
Donovan, K. J. ;
Scott, K. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (24)
[9]   Imaging Carbon Nanotube Interactions, Diffusion, and Stability in Nanopores [J].
Eichmann, Shannon L. ;
Smith, Billy ;
Meric, Gulsum ;
Fairbrother, D. Howard ;
Bevan, Michael A. .
ACS NANO, 2011, 5 (07) :5909-5919
[10]   Bending and buckling of carbon nanotubes under large strain [J].
Falvo, MR ;
Clary, GJ ;
Taylor, RM ;
Chi, V ;
Brooks, FP ;
Washburn, S ;
Superfine, R .
NATURE, 1997, 389 (6651) :582-584